Geophysical Research Abstracts Vol. 18, EGU2016-16993, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Ultra-high degree spectral modelling of Earth and planetary topography

Moritz Rexer (1,2) and Christian Hirt (1,2)

Institute of Astronomical and Physical Geodesy, Technische Universität München, München, Germany (m.rexer@tum.de),
Institute for Advanced Study, Technische Universität München, München, Germany

New methods for ultra-high degree spherical harmonic analyses and syntheses have been developed and studied over the past years. The focus group "High-resolution Gravity Modelling", established in 2013 at TU Munich, has implemented ultra-high degree spectral modelling techniques and used successfully to transform high-resolution topography grids of Earth, Moon and Mars into spherical harmonics.

For Earth, a new set of 1 arc-min topography models, developed by our group and released under the name Earth2014, was expanded into a spherical harmonic series to degree 10,800. For the 15 arc-sec resolution SRTM15_plus topography and bathymetry, a spectral resolution of degree 43,200 was achieved. For Moon and Mars, topography grids from laser altimetry were harmonically analysed up to degree \sim 46,000.

The spectral representations of the topography grids presented in this contribution are required in the context of spectral gravity forward modelling with ultra-high degree, where the topographic potential is computed as a function of the spherical harmonic series of the topography and its integer powers.

References:

Hirt, C., and M. Rexer (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics, International Journal of Applied Earth Observation and Geoinformation 39, 103-112, doi:10.1016/j.jag.2015.03.001.

Rexer, M. and C. Hirt (2015), Ultra-high degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Moon and Mars. Surveys in Geophysics 36(6), 803-830, doi: 10.1007/s10712-015-9345-z.