

Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

Martha Perdikaki (1), Andreas Kallioras (1), Christophoros Christoforidis (2), Dimitris Iossifidis (2), Anastasios Zafeiropoulos (3), Klisthenis Dimitriadis (4), Christos Makropoulos (1), Klaasjan Raat (5), and Gerard van den Berg (5)

(1) National Technical University of Athens, School of Mining & Metallurgical Engineering, Athens, Greece (kallioras@metal.ntua.gr), (2) GtG Technologies S.A., (3) UBITECH, (4) Geoservice, (5) KWR Watercycle Research Institute

Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions.

The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring –and today degraded– coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment.

A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO), for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii) managed aquifer recharge of the upper un-consolidated formation to sustain irrigation at the upstream area for agriculture. This facility will demonstrate how MAR can be used to sustain groundwater dependent ecosystems (and/or prevent their further degradation), while at the same time safeguarding water supply.

Acknowledgements: This research is part of SUBSOL-bringing coastal SUBsurface water SOLutions to the market. SUBSOL has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642228