Geophysical Research Abstracts Vol. 18, EGU2016-17473-1, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Cryptic or day-to-day parts of the riverbed N cycle – new challenges for ${\rm ^{15}N}$

Mark Trimmer, Liao Ouyang, and Katrina Lansdown Queen Mary University of London

The discovery of anaerobic ammonium oxidation (anammox) not only changed our understanding of the nitrogen cycle in aquatic ecosystems but it also undermined some of the key ¹⁵N techniques used to study it. Reformulations of principle equations and the development of new ¹⁵N₂ and ¹⁵N₂O techniques enabled the simultaneous quantification of N₂ production by anammox and denitrification in mainly soft, cohesive sediments where redox gradients are clearly defined and solute exchanged governed by diffusion. At the heart of the application of ¹⁵N, for the quantification of natural ¹⁴N cycling, is the key assumption that the respective pools of ¹⁵N and ¹⁴N are evenly mixed and that both are cycled without bias towards each other. Recent evidence, however, from a variety of aquatic ecosystems, suggests that this may not be the case. For example, organic N may be oxidised directly to N₂ gas without ever mixing with the inorganic pool or inorganic intermediates (e.g. nitrite) are 'shunted' internally and also fail to mix evenly with the applied tracer pool. Our most recent work in permeable, oxic gravel riverbeds presents some particular challenges to the application of ¹⁵N. In these systems, a tight coupling between aerobic nitrification and anaerobic N₂ production – in the presence of 100