

Influence of mowing frequency on N competitions between plant and microorganisms of temperate grasslands under extreme drought

Marco Tulio Lara Jimenez (1,2,3), Christina Bogner (2), Anke Jentsch (3), and Bruno Glaser (4)

(1) Disturbance Ecology, University of Bayreuth, Bayreuth, Germany, (2) Ecological modelling, University of Bayreuth, Bayreuth, Germany, (3) Disturbance ecology, University of Bayreuth, Bayreuth, Germany, (4) Soil Biochemistry, Martin-Luther University of Halle-Wittenberg, Halle, Germany

Global warming is predicted to have large effects on local climatic events in Central Europe such as the occurrence of summer droughts during growing seasons. This could impact on the N distribution between plants and soil microbes. We test the effects of simulated extreme droughts combined with mowing frequency on semi natural grassland during one growing season. The changes in the N competition strength of plants and microorganisms were quantified through the fraction of inorganic N uptake by the plants and microorganisms (1, 4 and 16 days) after the application of a concentrated solution of labeled ammonium nitrate ($\text{N}^{15}\text{H}_4\text{-N}^{15}\text{O}_3$) in the upper soil. Extreme droughts were simulated for late spring and summer seasons using a rain out shelter system and reducing water income with an equivalent of 1000-year drought. The control was a weekly average of the rain from the last 30 years. Mowing regimes were organized into two and four mowing a year. The microbial biomass and microbial N did not differ significantly for different drought scenarios. Mowing regimes seems to have a positive impact on the microbial and plant biomass and on the N-status. Rapid microbial N-uptake: 10 - 20% already after 1 day, 20 - 30% after 4 days. Rapid N-inclusion in plants: 10 - 50% after 1 day. Summer drought favors N-inclusion in plants, much more than spring drought. This shows that mowing frequency and extreme drought have positive N-inclusion for plants, improving the N-supply after mowing (less biomass and higher N-inclusion). Adaptation strategies of microorganisms improve N-supply in the short-term. We conclude that mowing frequency is a good management strategy to induce adaptation strategies on semi grassland ecosystems.

Key words: climate variability; mowing frequency; summer drought; plant and microbial biomass; N^{15} ; N-inclusion; N-uptake.