

An Accurate Sphere-Centered Coordinate System Using Semi-Analytic Metric Terms

Kevin Viner (1), Alex Reinecke (1), Sasa Gabersek (1), James Doyle (1), Eric Hendricks (2), David Ryglicki (3), and Francis Giraldo (4)

(1) Naval Research Laboratory, Marine Meteorology Division, Monterey, CA, United States, (2) Naval Postgraduate School, Department of Meteorology, Monterey, CA, United States, (3) National Research Council, Monterey, CA, United States, (4) Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, United States

Researchers at the Naval Postgraduate School have developed the Nonhydrostatic Unified Model of the Atmosphere (NUMA), a 3D combined CG/DG dynamical core with optional polynomial order, a wide range of time integrators, and flexible grid options. Researchers at the Naval Research Laboratory have leveraged that effort to begin development of NEPTUNE: the Navy Environmental Prediction sysTem Utilizing the NUMA corE. While, ultimately, NEPTUNE will be composed of a full suite of physics parameterizations, pre- and post-processing infrastructure, data assimilation, and coupling components to a variety of Earth-system models, this talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation. Results from the recently completed idealized component of the National Oceanographic and Atmospheric Administration (NOAA) High-Impact Weather Prediction Project (HIWPP) will be shown.