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Asteroid (4) Vesta has been visited by the NASA Dawn spacecraft in 2011/12. The combination of compo-
sitional/elemental information from the three onboard instruments with mineralogical information from the
howardite-eucrite-diogenite (HED) clan of stony achondrites has shed new light on the surface lithologic
heterogeneity and the early evolution. Although petrologic/chemical models have tried to unravel the evolutionary
processes, inconsistencies exist for some chemical major element/phase [e.g., 1, 2]. A revised evolutionary model
is presented here [3].

The three oxygen isotope signature of HEDs and, thus, of proto-Vesta is best met by a mixture of 80% ordinary
plus 20 % CV chondrites. Assuming a 27Al-triggered magma ocean within the first MA after accretion and
taking into account the reliable major element data of the silicate fraction of the chondritic mixture results a
crystallization sequence that differs from the earlier models [1, 2, 3]. The crystallized phase obtained by ‘MELTS’
software [4] starts with olivine and continues with minor olivine plus orthopyroxene until the liquid reaches a
Kd value (partition coefficient) of 0.31 where the fractionated melt is in equilibrium with the residual liquid [5].
The abundance of minerals and rocks formed in this model are converted in volume proportions assuming a
spherical shape of early Vesta (262 km radius) with a core (FeNi, FeNiS) radius of 110 km [6]. Two scenarios are
considered to describe the early bulk silicate Vesta. First, the early-crystallized olivine accumulated at the base of
the silicate shell is accounted for a dunitic lower mantle having a thickness of 46 km while the later crystallized
phases form an orthopyroxenitic upper mantle and a crust of thickness 84 and 22 km, respectively. Second, an
olivine-rich lower mantle that gradually changes to orthopyroxene-rich upper mantle is expected having an overall
shell thickness of 137 km, with a 15 km thick crust.

An important result is that the deep-seated olivine-rich mantle has not been accessible to the deep excavation
processes by large impacts such as the Rheasilvia basin formation [7]. This is likely the reason why olivine-rich
exposures detected by Dawn are of exogenic origin [8].

Reference: [1] Mandler B. E., Elkins-Tanton L. T. 2013. Meteorit. Planet. Sci. 48, 2333. [2] Toplis M.J., et
al., 2013. Meteorit. Planet. Sci. 48, 2300. [3] Thangjam G., PhD thesis, (in publication process). [4] Ghiorso
M.S., Sack R.O., 1995. Contributions to Mineralogy and Petrology 119, 197. [5] Takahasi E., Kushiro I., 1983.
American Mineralogist. 68, 859. [6] Russell C.T., et al., 2012. Science 336, 684. [7] Clenet H., et al., 2014. Nature
511, 303. [8] Nathues A., et al., 2015. Icarus 258, 467.



