Geophysical Research Abstracts Vol. 18, EGU2016-2599, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Carbon Dioxide Ice Structure and Density in the Martian Mesosphere

Thomas Mangan (1) and Benjamin Murray (2)

(1) School of Chemistry, University of Leeds, Leeds, United Kingdom (ee09tm@leeds.ac.uk), (2) School of Earth and Environment, University of Leeds, Leeds, United Kingdom (B.J.Murray@leeds.ac.uk)

 CO_2 ice has been grown experimentally via deposition in order to mimic ice formation in Martian mesospheric CO_2 clouds. This is achieved through the use of a low temperature and low pressure controlled stage mounted within an X-ray diffractomer (XRD). XRD patterns of CO_2 deposited at temperatures of 80 - 130 K and pressures below 1 mbar were analysed using a Rietveld refinement method and fitted to a crystalline cubic structure (space group *Pa3*). This crystal structure is consistent with XRD patterns also taken of dry ice. CO_2 ice densities were then determined from the refined lattice parameters across the 80 - 130 K range and extrapolated using literature values resulting in a temperature dependent density parameter valid over 80 - 195 K. This temperature dependent parameter for CO_2 ice density was applied to nucleation, sedimentation and growth rates of CO_2 ice particles under conditions relevant to the Martian mesosphere. The results were then compared to commonly used literature values, illustrating the need for the use of temperature dependent CO_2 ice densities.