

Comparing bottom-up and top-down parameterisations of a process-based runoff generation model tailored on floods

Manuel Antonetti (1), Simon Scherrer (2), Michael Margreth (3), and Massimiliano Zappa (1)

(1) Swiss Federal Research Institute WSL, Hydrological Forecasts, Birmensdorf, Switzerland (manuel.antonetti@wsl.ch), (2) Scherrer AG, Basel, Switzerland, (3) SoilCom GmbH, Zurich, Switzerland

Information about the spatial distribution of dominant runoff processes (DRPs) can improve flood predictions on ungauged basins, where conceptual rainfall-runoff models usually appear to be limited due to the need for calibration. For example, hydrological classifications based on DRPs can be used as regionalisation tools assuming that, once a model structure and its parameters have been identified for each DRP, they can be transferred to other areas where the same DRP occurs.

Here we present a process-based runoff generation model as an event-based spin-off of the conceptual hydrological model PREVAH. The model is grid-based and consists of a specific storage system for each DRP. To unbind the parameter values from catchment-related characteristics, the runoff concentration and the flood routing are uncoupled from the runoff generation routine and simulated separately. For the model parameterisation, two contrasting approaches are applied. First, in a bottom-up approach, the parameters of the runoff generation routine are determined *a priori* based on the results of sprinkling experiments on 60-100 m² hillslope plots at several grassland locations in Switzerland. The model is, then, applied on a small catchment (0.5 km²) on the Swiss Plateau, and the parameters linked to the runoff concentration are calibrated on a single heavy rainfall-runoff event. The whole system is finally verified on several nearby catchments of larger sizes (up to 430 km²) affected by different heavy rainfall events. In a second attempt, following a top-down approach, all the parameters are calibrated on the largest catchment under investigation and successively verified on three sub-catchments. Simulation results from both parameterisation techniques are finally compared with results obtained with the traditional PREVAH.