

Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

Claudia Teutschbein (1), Thomas Grabs (1), Reinert H. Karlsen (1), Hjalmar Laudon (2), and Kevin Bishop (1)

(1) Uppsala University, Department of Earth Sciences, Uppsala, Sweden, (2) Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, Umeå, Sweden

It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same *stationary* climate conditions (Karlsen *et al.*, 2014), but that they also play a fundamental role for the sensitivity of a catchment to a *changing* climate (Teutschbein *et al.*, 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions.

References

- Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on spatiotemporal variability of specific discharge in a boreal region, Abstract H52B-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. [Available at <http://adsabs.harvard.edu/abs/2014AGUFM.H52B..07K>, last accessed 11 Jan 2016].
- Teutschbein, C., T. Grabs, R.H. Karlsen, H. Laudon and K. Bishop (2015). Hydrological Response to Changing Climate Conditions: Spatial Streamflow Variability in the Boreal Region, *Water Resour Res*, doi: 10.1002/2015WR017337. [Available at <http://onlinelibrary.wiley.com/doi/10.1002/2015WR017337/abstract>, last accessed 11 Jan 2016].