

Medium term ecohydrological response of peatland bryophytes to canopy disturbance

Rhoswen Leonard (1), Nick Kettridge (1), Stefan Krause (1), Kevin Devito (2), Gustaf Granath (3), Richard Petrone (4), Carl Mandoza (2), and James Micheal Waddington (5)

(1) School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, (2) Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada., (3) Department of Aquatic Sciences and Water Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden., (4) Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, N2L 3G1, Canada., (5) Department of Earth and Atmospheric Science, University of Alberta, Edmonton, AB, T6G 2E3, Canada.

Canopy disturbance in northern forested peatlands is widespread. Canopy changes impact the ecohydrological function of moss and peat, which provide the principal carbon store within these carbon rich ecosystems. Different mosses have contrasting contributions to carbon and water fluxes (e.g. *Sphagnum fuscum* and *Pleurozium schreberi*) and are strongly influenced by canopy cover. As a result, changes in canopy cover lead to long-term shifts in species composition and associated ecohydrological function. Despite this, the medium-term response to such disturbance, the associated lag in this transition to a new ecohydrological and biogeochemical regime, is not understood. Here we investigate this medium term ecohydrological response to canopy removal using a randomised plot design within a north Albertan peatland. We show no significant ecohydrological change in treatment plots four years after canopy removal. Notably, *Pleurozium schreberi* and *Sphagnum fuscum* remained within respective plots post treatment and there was no significant difference in plot resistance to evapotranspiration or carbon exchange. Our results show that canopy removal alone has little impact on bryophyte ecohydrology in the short/medium term. This resistance to disturbance contrasts strongly with dramatic short-term changes observed within mineral soils suggesting that concurrent shifts in the large scale hydrology induced within such disturbances are necessary to cause rapid ecohydrological transitions. Understanding this lagged response is critical to determine the decadal response of carbon and water fluxes in response to disturbance and the rate at which important medium term ecohydrological feedbacks are invoked.