Geophysical Research Abstracts Vol. 18, EGU2016-469, 2016 EGU General Assembly 2016 © Author(s) 2015. CC Attribution 3.0 License.

Quantifying fossil fuel \mathbf{CO}_2 from continuous measurements of APO: a novel approach

Penelope Pickers (1), Andrew C. Manning (1), Grant L. Forster (1,2), Sander van der Laan (1), Phil A. Wilson (1), Angelina Wenger (3), Harro A. J. Meijer (4), David E. Oram (1), and William T. Sturges (1)

(1) University of East Anglia, Norwich, Norwich, United Kingdom (p.pickers@uea.ac.uk)., (2) National Centre for Atmospheric Sciences (NCAS), Natural Environment Research Council, UK., (3) School of Chemistry, University of Bristol, UK., (4) Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands.

Using atmospheric measurements to accurately quantify CO_2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO_2 fluxes. The ability to quantify the fossil fuel component of CO_2 (ff CO_2) from atmospheric measurements enables more accurate 'top-down' verification of CO_2 emissions inventories, which frequently have large uncertainty. Typically, ff CO_2 is quantified (in ppm units) from discrete atmospheric measurements of $\Delta 14CO_2$, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ff CO_2 ratios. In the United Kingdom (UK), however, measurements of $\Delta 14CO_2$ are often significantly biased by nuclear power plant influences, which limit the use of this approach.

We present a novel approach for quantifying $ffCO_2$ using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO_2 and O_2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying $ffCO_2$ from CO measurements ($ffCO_2(CO)$), whereby $ffCO_2(APO) = (APOmeas - APObg)/RAPO$, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO: CO_2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO_2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our $ffCO_2(APO)$ results to results obtained using the $ffCO_2(CO)$ method, using $CO:CO_2$ fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO $ffCO_2$ quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO: CO_2 fossil fuel emission ratios, compared to the $CO:CO_2$ emission ratio range.

Using a long-term dataset of atmospheric O_2 , CO_2 , CO_3 , CO_4 and CO_2 from Lutjewad, The Netherlands, we examine the accuracy of our ff CO_2 (APO) method, and assess the potential of using APO to quantify ff CO_2 independently from CO_2 measurements, which, as well as being unreliable in many UK regions, are very costly. Using APO to quantify ff CO_2 has significant policy relevance, with the potential to provide more accurate and more precise top-down verification of fossil fuel emissions.