

Greenhouse gas fluxes for the UK and Ireland using aircraft sampling during the GAUGE project

Joseph Pitt (1), Grant Allen (1), Carl Percival (1), Matt Rigby (2), Anita Ganesan (2), Peter Levy (3), Stephane Bauguitte (4), Michael Le Breton (1), James Lee (5), Iqbal Mead (1), Michelle Cain (6), and Paul Palmer (7)

(1) School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK (joseph.pitt@manchester.ac.uk), (2) School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK, (3) Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK, (4) Facility for Airborne Atmospheric Measurements (FAAM), Building 125, Cranfield University, Cranfield, Bedford, MK43 0AL, UK, (5) Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK, (6) Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK, (7) School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UK

As part of the GAUGE campaign (Greenhouse gAs UK and Global Emissions) the UK's FAAM (Facility for Airborne Atmospheric Measurement) aircraft was deployed to measure atmospheric composition around the UK and Ireland. Overall 15 flights were flown during the summers of 2014 and 2015; here we focus on a case study from two of these flights conducted upwind and downwind of the UK mainland on a single day in May 2015. During these two flights the prevailing meteorology brought maritime air from the Atlantic Ocean across the region, providing an upwind background conducive to the calculation of bulk regional greenhouse gas fluxes.

We employ the NAME (Numerical Atmospheric dispersion Modelling Environment) dispersion model to generate air history maps for discrete sampling segments of the flight tracks. These are convolved with spatially disaggregated fluxes from bottom-up emission inventories to produce a modelled time series of concentration enhancements along the sampling path of the aircraft. By comparing modelled concentration enhancements to the measured time series it is possible to assess the overall inventory performance, and by looking at the scale factor between measured and modelled enhancements we can estimate the weighted greenhouse gas fluxes over the sample footprint. We also assess the sampling strategy used during these flights, and provide recommendations for future studies using this technique.