Geophysical Research Abstracts Vol. 18, EGU2016-5085, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Using an SLR inversion to measure the mass balance of Greenland before and during GRACE

Jennifer Bonin

University of South Florida, College of Marine Science, St. Petersburg, United States (jbonin@mail.usf.edu)

The GRACE mission has done an admirable job of measuring large-scale mass changes over Greenland since its launch in 2002. However before that time, measurements of large-scale ice mass balance were few and far between, leading to a lack of baseline knowledge. High-quality Satellite Laser Ranging (SLR) data existed a decade earlier, but normally has too low a spatial resolution to be used for this purpose. I demonstrate that a least squares inversion technique can reconstitute the SLR data and use it to measure ice loss over Greenland. To do so, I first simulate the problem by degrading today's GRACE data to a level comparable with SLR, then demonstrating that the inversion can re-localize Greenland's contribution to the low-resolution signal, giving an accurate time series of mass change over all of Greenland which compares well with the full-resolution GRACE estimates. I then utilize that method on the actual SLR data, resulting in an independent 1994-2014 time series of mass change over Greenland. I find favorable agreement between the pure-SLR inverted results and the 2012 Ice-sheet Mass Balance Inter-comparison Exercise (IMBIE) results, which are largely based on the "input-output" modeling method before GRACE's launch.