Geophysical Research Abstracts Vol. 18, EGU2016-5941, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Physiological effects of NaCl on Apocynum venetum seedlings

Wei Han (1,2) and Ling Cao (3)

(1) College of Geographic Sciences and Tourism, Xinjiang Normal University, Urumqi, China (hanweiaaa@163.com), (2) Key Laboratory of Arid Area of Lake Environment and Natural Resources of Urumqi Xinjiang, Xinjiang Normal University, Urumqi, China (hanweiaaa@163.com), (3) College of Mathematics and Physics Sciences, Xinjiang Agricultural University, Urumqi, China (lwjcao@163.com)

Abstract: The physiological effects of NaCl on the Apocynum venetum seedlings were investigated, including the chlorophyll a fluorescence, leaf potential and growth rate, etc. The findings indicated that along with hardness index increasing, the leaf sample's chlorophyll content assumed the fluctuation condition which dropped firstly elevated again; the leaf water potential maintained stable basically; the energy of light absorption, the assignment and the dissipation balanced at 10 g/L and the growth rate presented the maximum value 9.8 mm/d; Along with the stress extension, the greatest quantum yield Fv/Fm dropped, metallic ion's absorption increased. In the 21st day, non-photochemical quenching coefficient NPQ presented the maximum value, absorbed energy proportion parameter Y(II) dropped firstly restored again, 3 kind of energy absorptions, the assignment dissipation parameter proportion stabilized in 10 g/L at Y(II):Y(NO):Y(NPQ) = 65%:20%:15%. The results suggested that in the A. venetum nursery process in the southern edge of Taklimakan Desert, phased tending should be adopted according to the seedling stage: 5-10 g/L salinity water should be used in irrigation in the seedling stage to maintain a more high leaf water potential which could prevent the decomposition of chlorophyll in which higher proportion of photochemical energy conversion could be stable using 10 g/L salt water irrigation to give A. venetum a full play of stronger salt adaptability to the southern margin of the Taklimakan Desert Oasis-Desert Ecotone in its restoration and construction.

Key words: saline water irrigation; leaf water potential; energy allocation strategies; growth rate