

Biogeochemical variations at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) in the northeast Atlantic Ocean

Susan Hartman (1), Richard Lampitt (1), Ute Schuster (2), Zongpei Jiang (3), Helene Frigstad (4), and Clare Ostle (5)

(1) National Oceanography Centre, UK, Southampton, United Kingdom (suh@noc.ac.uk), (2) University of Exeter, UK (U.Schuster@exeter.ac.uk), (3) Ocean College, Zhejiang University, China (zpjiang@zju.edu.cn), (4) University of Bergen, Norway (helene.frigstad@gfi.uib.no), (5) University of East Anglia, UK (C.Ostle@uea.ac.uk)

We examine high-resolution autonomous measurements of carbon

dioxide partial pressure $p(CO_2)$ taken in situ at the FixO₃ Porcupine Abyssal Plain sustained observatory (PAP-SO) site in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010 to 2012. Measurements of $p(CO_2)$ made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a-fluorescence and nitrate concentration data) to analyze weekly to seasonal controls on $p(CO_2)$ flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time-series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under saturation of CO₂ in surface waters throughout the year which gives rise to a perennial CO₂ sink. Comparison with an earlier dataset collected at the site (2003 to 2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.