

Fingerprinting captured CO_2 using natural tracers: Determining CO_2 fate and proving ownership

Stephanie Flude (1), Stuart Gilfillan (1), Gareth Johnston (1), Finlay Stuart (2), and Stuart Haszeldine (1) (1) School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FE, UK, (2) Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK

In the long term, captured CO_2 will most likely be stored in large saline formations and it is highly likely that CO_2 from multiple operators will be injected into a single saline formation. Understanding CO_2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO_2 leak, being able to identify the owner of the CO_2 is of vital importance in terms of liability and remediation.

Addition of geochemical tracers to the CO_2 stream is an effective way of tagging the CO_2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO_2 is sufficient to distinguish CO_2 captured using different technologies and from different fuel sources, from likely baseline conditions.

Results include analytical measurements of CO_2 captured from a number of different CO_2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO_2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions.

Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO_2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.