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We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear
wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth’s liquid outer core [1]). Recent experimental
works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes,
characterized by (I, m,®), where [, m is the polar and azimuthal wavenumber and & = w/Q,,,; the dimensionless
frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer
shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3]
showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection.
Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes
cannot exist.

In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an
experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating
spherical gap flow where the inner sphere is subrotating or counter-rotating at §2;,, with respect to the outer spherical
shell at Q,,;, characterized by the Rossby number Ro = (1, — Qout)/Qout- The radius ratio of n = 1/3, with
7in, = 40mm and 7,,; = 120mm, is close to that of the Earth’s core. Our apparatus is running at Ekman numbers
(E =~ 107%, with E = v/(Qouir2,;), two orders of magnitude higher than most of the other experiments. Based
on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the
onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found
a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We
show that the amplitude of the most dominant mode (I, m,®) = (3,2, ~ 0.71) is increasing with increasing | Ro|
until a critical Rossby number Ro.,;;. Accompanying with this is an increase of the zonal mean flow outside the
tangent cylinder, leading to enhanced angular momentum transport. At the particular Ro.,;;, the wave mode, and
the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow
inside the tangent cylinder. We found that the critical Rossby number scales approximately with £1/5.
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