

## **Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations**

Bastian Welsch (1,2), Wolfram Rühaak (1,2), Daniel O. Schulte (1,2), Kristian Bär (1), Ingo Sass (1,2) (1) Department of Geothermal Science and Technology, Technische Universität Darmstadt, Darmstadt, Germany (welsch@geo.tu-darmstadt.de), (2) Darmstadt Graduate School of Excellence Energy Science and Engineering, Darmstadt, Germany

Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.