A new paleointensity result deduced for the Oligocene period fromQatrani basalt, Egypt

Abstract

Ahmed Saleh (1) and Yuhji Yamamoto (2) (1) National Research Institute for Astronomy and Geophysics, Helwan, Cairo, Egypt, (2) Center for Advanced Marine Core Research, Kochi University, Kochi 783-8502, Japan

We have conducted paleodirection and paleointensity measurements of basalt flows from Qatrani basalt, Egypt. Published age of Qatrani basat is $25 \pm 2 \mathrm{Ma}$. Various rock magnetic analyses indicate that the main magnetic carriers of samples are one phase of pure magnetite (Ti-poor titanomagnetites), which have pseudo single domain (PSD) sizes. Directional analysis of the Oligocene basalts is very straightforward and updated mean VGPs have been calculated from the Qatrani ($68 \mathrm{~N}, 90 \mathrm{E} ; \mathrm{Kappa=} 274 ; \mathrm{A}^{95}=1.8$) which is coincide with the previous Oligocene paleomagnetic studies. The Tsunakawa-Shaw (LTD-DHT Shaw) method yielded five successful results of 12.9$17.5 \mu$ Tfrom two sites, giving one acceptable site-mean paleointensityof $15.5 \mu \mathrm{~T}$ with a standard deviation of 1.8μ Tat the $25 \pm 2 \mathrm{Ma}$. In terms of a dipole moment, an average VDM is calculated to be $2.7 \times 10^{22} \mathrm{~A} \mathrm{~m}^{2}$ with a standard deviation of $1.29 \times 10^{22} \mathrm{Am}^{2}$. This is the first result from Egypt, and is associated with a reasonably high $\mathrm{Q}_{\text {PI }}$ value (Biggin and Paterson, 2015) of 5. The newly obtained VDM is indistinguishable from an average VDM of $3.55 \times 10^{22} \mathrm{Am}^{2}$ with a standard deviation of $0.67 \times 10^{22} \mathrm{Am}^{2}$ calculated from theselected 65 site-mean Thellier paleointensity data from the latest paleointensity database, and is about third of the present geomagnetic dipole moment ($\sim 8 \times 10^{22} \mathrm{Am}^{2}$).

