Geophysical Research Abstracts Vol. 18, EGU2016-8788, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

A new method for speciated CH_3O_2 radical detection and HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) studies of the CH_3O_2 self-reaction

Lavinia Onel, Alexander Brennan, Paul W. Seakins, Lisa Whalley, and Dwayne Heard University of Leeds, Leeds, United Kingdom (chmlo@leeds.ac.uk)

A new method has been developed for the speciated detection of CH_3O_2 radicals by FAGE (Fluorescence Assay by Gas Expansion) by titrating CH_3O_2 to CH_3O by reaction with added NO and then detecting the resultant CH_3O by LIF (laser induced fluorescence). The limit of detection of the technique is $\sim 10^8$ cm⁻³ CH_3O_2 for a unity signal-to-noise ratio and 5 min averaging time. The method has been used for time monitoring of CH_3O_2 during its self-reaction within HIRAC at 1 bar and room temperature to determine a preliminary value of the rate coefficient of 4.2×10^{-13} cm³ s⁻¹, which lies in the range of the previous results, $(2.7 - 5.2) \times 10^{-13}$ cm³ s⁻¹.

In addition to detection of CH_3O_2 , products of the CH_3O_2 self-reaction were also observed for the two reaction channels over a range of temperatures from 260 - 320 K:

(a)
$$2CH_3O_2 \rightarrow CH_2O + CH_3OH$$
; (b) $2CH_3O_2 \rightarrow 2CH_3O + O_2$,

namely HO₂ radicals (from reaction of CH₃O + O₂) and formaldehyde monitored by FAGE and formaldehyde and methanol observed by FTIR. A good agreement has been obtained between the FTIR and FAGE measurements of CH₂O which increased to \sim 2 ppmv over the experiments. Using the concentrations of CH₃OH and CH₂O, the branching ratio for channel (a) at room temperature has been determined as $r_a = 0.66 \pm 0.06$. The result is in very good agreement with the value recommended in the review of Tyndall $et\ al.^2$ of $r_a = 0.63 \pm 0.06$. No temperature dependence of r_a has been observed from 296 K to 321 K.

- 1. http://iupac.pole-ether.fr/
- 2. G. S. Tyndall et al., J. Geophys. Res. 106, 12157 (2001).