

The added value of new GNSS for ionosphere monitoring

Rene Warnant and Cecile Deprez

Geodesy and GNSS, University of Liege, Belgium (Rene.Warnant@ulg.ac.be)

Local variability in the ionosphere Total Electron Content due to different types of ionospheric “disturbances” can strongly degrade the performances of GNSS-based high accuracy positioning.

In this context, the University of Liege developed the so-called GPSTECMON software: based on GPS dual frequency measurements performed at a single station, GPSTECMON monitors the Total Electron Content and detects the occurrence of ionospheric disturbances which can pose a threat to GNSS high accuracy applications. Then, the reconstructed information on the ionospheric activity is exploited to offer different services to GNSS users through an operational web site. At European mid-latitudes, the most frequent disturbances are Medium-Scale Travelling Ionospheric Disturbances (TIDs).

At the present time, ionosphere monitoring using GPS dual frequency L1/L2 measurements has different weaknesses:

- Limited TEC accuracy: it ranges from 2 to 5 TECU; this is mainly due to the fact that the “classical” dual frequency TEC reconstruction techniques need code measurements to solve phase ambiguities; multipath, noise and hardware biases affecting code measurements limit the accuracy of the reconstructed TEC.
- Limited TEC spatial resolution: it depends on the number of satellites in view; in Liege (Belgium), the number of GPS satellites in view ranges from 8 to 15 with an average of 11. A proper modeling of local variability in TEC due to TID's or to geomagnetic storms requires an increased spatial resolution.
- Observational bias in the detection of irregularities: GPS based detection of moving structures like TIDs is limited due to satellite orbital motion. Indeed, most of GNSS satellites and, in particular, GPS satellites are placed on Medium Earth Orbits (MEO) at an altitude around 20 000 km. This means that they have a velocity with respect to the ionosphere. TIDs are moving structures and therefore have also a velocity with respect to the ionosphere. In practice TID detection will be affected by the relative velocity between the TID and the satellite. In other words, the study of ionospheric disturbances using GPS satellites has an “observational bias” which makes their modelling more difficult.

The availability of new GNSS emitting new and more accurate signals and also the combination of the different GNSS will allow the development of improved data processing strategies for ionosphere monitoring and, as a consequence, improved services for GNSS users. The paper discusses the added value of new GNSS for ionosphere monitoring with respect to the above-mentioned weaknesses.