

Ultra-rapid earth rotation determination with VLBI during CONT11 and CONT14

Rüdiger Haas (1), Thomas Hobiger (1), Shinobu Kurihara (2), and Tetsuya Hara (2)

(1) Chalmers University of Technology, Earth and Space Sciences, Space Geodesy and Geodynamics, Onsala, Sweden (rudiger.haas@chalmers.se), (2) Geospatial Information Authority of Japan, Tsukuba, Japan

In 2007 the Geospatial Information Authority of Japan (GSI) and the Onsala Space Observatory (OSO) started a collaboration project aiming at determining the earth rotation angle, usually expressed as UT1-UTC, in near realtime. In the beginning of this project dedicated one hour long one-baseline experiments were observed periodically using the VLBI stations Onsala (Sweden) and Tsukuba (Japan). The strategy is that the observed VLBI data are sent in real-time via the international optical fibre backbone to the correlator at Tsukuba where the data are correlated with a software correlator and analyzed in near-real time with the c5++ VLBI data analysis software, thus producing UT1-UTC results with very low latency. The latency between the observation at the stations and the determination of UT1-UTC is on the order of a few minutes, thus we can talk about an ultra-rapid determination of UT1-UTC. An offline version of this strategy was adopted in 2009 for the regular VLBI intensive series INT-2, organized by the International VLBI Service for Geodesy and Astrometry (IVS), that involves Wettzell (Germany) and Tsukuba. Since March 2010 the INT-2 is using real-time e-transfer, too, and since June 2010 also automated analysis. Starting in 2009 the ultra-rapid approach was applied to regular 24 hour long IVS VLBI-sessions that involve Tsukuba and Onsala, so that ultra-rapid UT1-UTC results can be produced already during ongoing VLBIsessions. This strategy was successfully operated during the 15 days long continuous VLBI campaigns CONT11 and CONT14. In this presentation we give an overview of the ultra-rapid concept, present the results derived during CONT11 and CONT14, and compare these ultra-rapid results to results derived from post-processing.