Effects of *Eriophorum vaginatum* on N$_2$O emissions at a restored peatland

Martin Brummell (1), Cristina Lazcano (2), and Maria Strack (1)

(1) University of Waterloo, Waterloo, Canada, (2) University of Calgary, Calgary, Canada

Restoration of peatlands extracted for horticultural peat production includes both deliberate and accidental introduction of a wide range of plant species, including vascular plants and bryophytes. The roots of vascular plants provide a channel for the movement of greenhouse gases (GHG) including N$_2$O in many soil ecosystems, and may stimulate production of N$_2$O or have other effects via the release of root exudates that are then taken up by soil microorganisms such as heterotrophic denitrifiers.

Here we carried out a field study in order to evaluate the effects of *Eriophorum vaginatum*, an abundant sedge at the harvested peatland at Seba Beach, Alberta, Canada, (53°27′17.2″N 114°52′52.0″W) where restoration efforts began in late 2012, and is the dominant ground cover in some areas. We hypothesized that *E. vaginatum* would increase net N$_2$O production from peat compared to areas of bare peat or moss.

We measured net GHG exchange for CO$_2$, CH$_4$, and N$_2$O over one growing season (May-September 2015) using static chambers within this peatland to compare between plots containing *E. vaginatum* and plots lacking vascular plants. Plots were located along a transect of increasing water table, in order to discriminate between the effects of *E. vaginatum* and the prevailing hydrological conditions on N$_2$O fluxes.

Net fluxes of N$_2$O from the peat to the atmosphere were observed throughout the experimental area, as well as fluxes in the opposite direction, in which the peat removed N$_2$O from the atmosphere inside the chamber. Non-zero fluxes were highly variable in both occurrence and magnitude, though a small number of plots accounted for the majority of measured fluxes. Neither aboveground biomass of *E. vaginatum* nor its presence in a plot was correlated with either frequency or direction of N$_2$O flux measurements. Other factors, such as water table fluctuations and temperature may be stronger drivers of these microbially-mediated processes than vegetation at this stage of the restoration.