

New approach to characterize CO₂ and CH₄ emissions over Sacramento, California using an airborne aircraft measurement

Ju-Mee Ryoo (1,2), Laura Iraci (1), Tomoaki Tanaka (3), Josette Marrero (1,2), Emma Yates (3), Warren Gore (1), Inez Fung (4,5), and Ira Leifer (6)

(1) NASA Ames Research Center, Moffett Field, CA, USA, (2) Oak Ridge Associated Universities, Oak Ridge, TN, USA, (3) Bay Area Environmental Research Institute, Moffett Field, CA, USA, (4) Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA, (5) Department of Environmental Sciences, Policy and Management, University of California, Berkeley, Berkeley, CA, USA, (6) Bubbleology Research International, CA, USA

The CO₂ and CH₄ emission fluxes over Sacramento, California, USA, are estimated using an aircraft equipped with a greenhouse gas sensor through Alpha Jet Atmospheric eXperiment (AJAX). To better quantify the emission fluxes over the entire city and two small point sources within the area, we designed flight patterns in cylindrical loops, and computed the emission fluxes from 4 flights in 2015 using the Kriging interpolation method based on Gauss's divergence theorem. The mean emission rates of CO₂ (CH₄) were 1.5×10^5 – 6.5×10^5 (0–70) g s⁻¹. The concentrations at the downwind side of Sacramento show somewhat persistent patterns among the 4 flights, but the magnitudes and locations of the fluxes vary depending on the individual flight condition and seasonality. For example, on September 24, 2015, the maximum fluxes of CO₂ and CH₄ were $5.7 \text{ mmol m}^{-2}\text{s}^{-1}$ and $62.5 \mu\text{mol m}^{-2}\text{s}^{-1}$, while those of CO₂ and CH₄ were $2.3 \text{ mmol m}^{-2}\text{s}^{-1}$ and $49.8 \mu\text{mol m}^{-2}\text{s}^{-1}$ on November 17, 2005, respectively. Furthermore, the emission fluxes tend to be smaller in summer (July) than winter (November). Both the CO₂ and CH₄ concentrations, the wind speed and direction show high spatial variability both horizontally and vertically. The local maximum emission flux over a landfill and a rice field measured on July 29, 2015, was 2–3 times lower than the maximum measured over the entire city area due to seasonality, low CO₂ concentration and light wind conditions, suggesting that the wind and seasonal variation in CO₂ and CH₄ have a strong effect on the flux estimation of the both local emissions and city-size emissions. Our results demonstrate that the aircraft-based approach is effective and useful for capturing city-size emission fluxes and estimating the greenhouse gas emissions and its sources.