A methodology to determine the optimum WRF-ARW configuration over Port of Huelva

I. Porras, M. Picanyol, R. Arasa, M.A. González, A. Domingo-Dalmau Technical Department, Meteosim S.L., Barcelona, Spain

Abstract

A calibration of the meteorological model WRF for operational forecasting over the city of Huelva (Spain) and its metropolitan area is performed. Weather forecasting will be used to analyze meteorological hazard impacts and to improve the management of the local air quality. A sensitivity analysis is done considering different physics and dynamic options, the use or not of very high resolution physiographic databases (topography and land use), and the assimilation of observations. Experiment results are compared with observations during a representative period of time, focusing on the wind field (the main risk factor in the region), and the best configuration is obtained. Then, simulations for the years 2012 and 2013 are done using this configuration. When comparing with observations, the model has a confidence level of 70% for the temperature, 81% and 66% for the wind speed and wind direction respectively, and 90% for the relative humidity.

Introduction

This work aims to investigate the optimum configuration of a meteorological model that allows to reduce the uncertainty in Huelva, a region in Southern Spain. It has used WRF model to obtain the meteorological forecasts and it has defined a procedure to calibrate the model in a customized way for Huelva, being replicable to any region.

Methodology

Studied area, simulation domains and episodes selected

The regional and mesoscale meteorological model used for the study has been the Weather Research and Forecasting - Advanced Research (WRF-ARW) version 3.7. In Figure 1 we show modeling domains used for operational forecasts over the coastal region of Huelva. The WRF model is built over a mother domain (called d01) with 9 km spatial resolution, centered at 37.14°N 7.38°W.

Figure 1: Modeling domains used for simulation: d01 (9 km), d02 (3 km), d03 (1 km), d04 (0.333 m) (left) and d04 (0.333 m) (right) spatial resolution.

Modeling approach

- The initial and boundary conditions for the operational forecast configuration over domain d01 were supplied by the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) with an horizontal resolution of 0.25° and updated every 6 hours.
- To calibrate and validate the model initial and boundary conditions were supplied by the NCEP/NCAR Climate Forecast System Reanalysis v2 (CFSv2, Saha et al., 2013), with 0.5° of spatial resolution and 6h of temporal sampling.
- Two-way nesting was used for the external domains (d01, d02 and d03) and one-way nesting for d04. On the innermost domain resolution (d04) Large-Eddy-Simulation (LES) technique has been applied [1].

Sensitive analysis and calibration

Physic options

In order to obtain the optimum model configuration over the study area, we have realized a total of 18 experiments modifying physic options as shows Table 1

Exp.	PBL	Surface	CU	SW	LW	MPh.
		Layer		Rad.	Rad.	MPh.
INI	YSU	MM5	KF	Dudhia	RRTM	WMS3
MPH1	YSU	MM5	KF	Dudhia	RRTM	WDM6
MPH2	YSU	MM5	KF	Dudhia	RRTM	SBU-Lin
LWR1	YSU	MM5	KF	Dudhia	RRTMG	MPH
LWR2	YSU	MM5	KF	Dudhia	FLG	MPH
SWR1	YSU	MM5	KF	RRTMG	LWR	MPH
SWR2	YSU	MM5	KF	FLG	LWR	MPH
CMS1	YSU	MM5	MS KF	SWR	LWR	MPH
CMS2	YSU	MM5	Grell 3D	SWR	LWR	MPH
CMS3	YSU	MM5	New SAS	SWR	LWR	MPH
PBL1	MYJ	Eta sim	CMS	SWR	LWR	MPH
PBL2	QNSE	QNSE	CMS	SWR	LWR	MPH
PBL3	ACM2	MM5	CMS	SWR	LWR	MPH
PBL4	MYNN2	MYNN	CMS	SWR	LWR	MPH
PBL5	MYNN3	MYNN	CMS	SWR	LWR	MPH
PBL6	UW	MM5	CMS	SWR	LWR	MPH
PBL7	GBM	MM5	CMS	SWR	LWR	MPH
PBL8	Shin-Hong	MM5	CMS	SWR	LWR	MPH

Table 1: Experiments analyzed corresponding to physic options.

Dynamic options

We have investigated some dynamical options (Table 2). We have focused on damping and diffusion option. These options could improve modeltop reflection of mountain waves, remove poorly resolved structures and reduce noise at model scales similar to grid-spacing.

Exp.	Turb. mixing	Eddy Coef.	HDif.6	HDif.6 factor	Damp.	Damp. coef.
INI	Dif. 2th	Smagorinsky	No	0.12	No	-
DIN1	Dif. 2th	Smagorinsky	Knievel	0.12	No	-
DIN2	Dif. 2th	Smagorinsky	Knievel	0.36 (d03)	No	-
DIN3	Dif. 2th	Smagorinsky	No	0.12	Rayleigh	0.2
DIN4	Dif. 2th	Smagorinsky	Knievel	0.36 (d03)	Rayleigh	0.2

Table 2: Experiments analyzed corresponding to dynamic options.

Number of vertical levels

There are numerous papers which demonstrate that increasing the number of vertical levels is related to an improvement of the accuracy of the forecasts [2].

Exp.	Vertical levels
INI	30 (default configuration)
VER1	36 (15 below 1.500 m and first level at 16 m)
VER2	42 (21 below 1.500 m and first level at 8 m)

Table 3: Experiments analyzed corresponding to vertical levels.

In Figure 2 we show a comparison between levels for every experiment and their distribution in sigma coordinates.

Physiographic model database

When very high resolution is required it is necessary to couple higher resolution databases. In this research, we have evaluated different topographical and land use database information (Table 4).

Table 4: Experiments analyzed corresponding to physiographic model database.

Figure 3: Land use information (Corine Land CLass 2006 - 100 m resolution) used over d04.

Nudging options and data assimilation

Data assimilation system based on the grid-point statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) system has been applied. We have considered observational nudging and grid nudging using meteorological observations from:

Exp.

INI NUD **NUD**2 NUD3 NUD4 NUD

Contact Information:

Meteosim S.L. Barcelona Science Park Baldiri Reixac 10-12, Barcelona (Spain) Phone: +34 934 499 245 Email: iporras@meteosim.com

Figure 2: Sigma level distribution for every experiment defined.

Exp.	Topography and Land Use database
HRP1	ASTER and CLC2006
HRP2	SRTM and CCI-LC

• Metars, radiosoundings and monitoring stations.

• Irradiance information from EUMETSAT satellites.

This information has been coupled and combined into WRF defining different testing experiments as we show in Table 5.

		Nudging options	5
	d01 (9 km)	d02 (3 km)	d03 (1 km)
	NO	NO	NO
1	Grid (global data)	NO	NO
2	Grid (satellite data)	NO	NO
3	Grid (global and satellite data)	NO	NO
4	Grid (satellite data)	Observations	NO
5	Grid (satellite data)	Observations	Observations

Table 5: Experiments analyzed corresponding to nudging options.

Results and conclusions

To evaluate the model performance, four statistics have been selected: Mean Bias (MB), Mean Absolute Gross Error (MAGE), Root-Mean-Square Error (RMSE), Index of Agreement (IOA) and Directional Accuracy (DACC) statistics. Table 6 shows the statistical evaluation for the optimum model configuration.

	Temperature (2m)		Wind Speed (10m)		Wind Direction (10m)			Relative Humidity (2m)				
Exp.	MB	MAGE	IOA	MB	RMSE	IOA	MB	MAGE	DACC	MB	MAGE	IOA
	<±0,5℃	<2°C	≥0,8	<±0,5ms ⁻¹	< 2,0ms ⁻¹	≥0,60	<±10°	<30°	%	<±10%	<20%	≥0,6
VER1	-0,51	1,77	0,97	1,37	2,19	0,64	9,90	33,47	69,36	-1,35	9,89	0,87
MPH2	-0,21	1,78	0,97	1,39	2,30	0,63	10,61	31,06	69,54	-3,62	10,60	0,85
LWR1	-0,27	1,79	0,97	1,35	2,26	0,64	10,18	30,87	69,43	-3,61	10,63	0,84
SWR1	0,02	1,77	0,97	1,38	2,26	0,64	10,21	31,57	68,45	-4,11	10,78	0,84
CMS1	-0,25	1,79	0,97	1,28	2,22	0,64	10,56	31,41	68,67	-3,47	10,71	0,84
DIN4	0,30	1,79	0,97	1,29	2,23	0,64	10,47	31,17	69,23	-3,14	10,45	0,85
HRP1	-0,53	1,48	0,98	0,40	1,47	0,76	9,52	30,66	69,96	-4,44	9,45	0,89
NUD5	-0.56	1.75	0.89	1.11	2.04	0.65	7.20	39.19	58.87	-3.42	9.91	0.83

Table 6: Statistical evaluation of the different physic-dynamic-physiographic experiments for the temperature, wind speed, wind direction and relative humidity.

We can conclude that optimum model configuration has a confidence level of 70% for the temperature, 81% and 66% for the wind speed and wind direction respectively, and 90% for the relative humidity. Table 7 shows optimum WRF-ARW configuration for the operational forecast over the region of study.

Scheme

Lon Sho

Planeta

Verti Diffusi Diffusi

Table 7: Configuration option selected as optimum for the region.

Acknowledgements

The authors gratefully acknowledge Port of Huelva and GTD System and Software Engineering for their support and collaboration

References

[1] J.C. Wyngaard. Toward numerical modeling in the "terra incognita". J. Atmos Sci., 61:1816–1826, 2004.

[2] Vuille M. Clement A Garreaud, R. The climate of the altiplano: observed current conditions and mechanism of past changes. Palaeoclimatol, 194:1–18, 2003.

or parameterization	Option selected
Initialization	GFS 0.25°
Microphysics	SBU-Lin
ngwave radiation	RRTMG
ortwave radiation	Dudhia
Cumulus	Kain-Fritsch
Surface Layer	MM5 similarity
ary Boundary Layer	YSU (d01,d02,d03)
	LES (d04)
ical levels number	36
ion 6th order option	Knievel
ion 6th order factor	0.36 (d03)
Damping	Rayleigh
Topography	GTOPO30 (d01 and d02)
	ASTER (d03 and d04)
Land Use	GLC (d01 and d02)
	CLC2006 (d03 and d04)
Nudging	Grid (d01)
	Observations (d02 and d03)