

Improvement of process identification and discharge measurement by the combination of different sensors A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Improvement of process identification and discharge measurement by the combination of different sensors

Andreas Schimmel

Institute of Mountain Risk Engineering University of Natural Resources and Life Sciences, Vienna

> Overview Monitoring site Lattenbach

Debris flow 09.08.15 Debris flow 10.08.15 Debris flow 16.08.15

Warning System AMM-Detection

Improvement of process identification and discharge measurement by the combination of different sensors A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Monitoring site Lattenbach

Lattenbach:

sensors, geophones,...

Grins, Tyrol; Catchment area 5,3 km² Debris flow monitoring since 2004 Instrumentation: ultrasonic sensors, weighing precipitation gauge, seismometer, video cameras, 2D laser scanner, debris flow radar, infrasonic

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Monitoring site Lattenbach

New installations on the test site:

Debris flow Radar

 \rightarrow surface velocity of a debris flow

2D-Laser Scanner

 \rightarrow cross sectional wetted area

AMM-Detection

 \rightarrow automatic detection of debris flows based on infrasound and seismic data

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris flow Radar

High frequency pulse Doppler Radar

- Max. measurement distance 2,5 km
- Range gate length 15-250 m
- Velocities up to 300 km/h
- Alarming trigger in case of an event

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

2D-Laser Scanner

SICK Laser-Scanner LMS511

- Resolution: 0,25°
- Sample frequency: 5 Hz
- Data acquisition and configuration: Raspberry PI 1 Model B

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

AMM-Detection

Automatic detection based on infrasound and seismic data

- System which detects alpin mass movements in real time directly at the sensor site and comes along with only one seismic sensor, one infrasound sensor and a microcontroller
- Warning system for debris flows / debris floods and snow avalanches
- Combination of seismic and infrasound sensors to get advantages of both technologies
- Identify magnitude and process type based on the seismic and infrasound signals

Improvement of process identification and discharge measurement by the combination of different sensors

70 60

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 09.08.2015

Overall volume:16000 m³ Max. discharge: 64 m³/s Av. discharge: 4,5 m³/s Max. velocity: 4,3 m/s Average velocity: 1,9 m/s

surface velocity measured by puls Doppler radar

discharge = welted area • surface velocity

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 09.08.2015

Discharge and total load of the debris flow on 09.08.2015

Improvement of process identification and discharge measurement by the combination of different sensors A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 09.08.2015

Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

AMM-Detection:

Early detection: 53 s

Debris Flow on 09.08.2015

Max. infrasound amp.: 776 mPa Max. seismic amp.: 113 µm/s Duration of event: 2671 s Peak-frequency band: 5-15 Hz

(a) Infrasound time series;(b) Seismogram;(c) Average amplitude of the frequency bands of the infrasound signal;(d) Average amplitude of the frequency band of the seismic signal;(e) Running spectrum of the infrasound signal;(f) Running spectrum of the seismic signal;

Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 10.08.2015

Overall volume: 26800 m³ Max. discharge: 53 m³/s Av. discharge: 7,4 m³/s Max. velocity: 4,4 m/s Average velocity: 2 m/s

discharge = welted area • surface velocity

Debris Flow on 10.08.2015

Discharge and total load of the debris flow on 10.08.2015

Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 10.08.2015

AMM-Detection:

Early detection: -14 s

Max. infrasound amp.: 859 mPa Max. seismic amp.: 134 µm/s Duration of event: 4561 s Peak-frequency band: 5-15 Hz

(a) Infrasound time series;(b) Seismogram;(c) Average amplitude of the frequency bands of the infrasound signal;(d) Average amplitude of the frequency band of the seismic signal;(e) Running spectrum of the infrasound signal;(f) Running spectrum of the seismic signal;

Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.

Debris Flow on 09.08. / 10.08.2015

Precipitation and discharge of the debris flows on 09.08. and 10.08.2015

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 16.08.2015

Overall volume: 10000 m³ Max. discharge: 16 m³/s Av. discharge: 2,8 m³/s Max. velocity: 2,6 m/s Average velocity: 1,6 m/s

surface velocity measured by puls Doppler radar

Debris Flow on 16.08.2015

Discharge and total load of the debris flow on 16.08.2015

Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

AMM-Detection:

Debris Flow on 16.08.2015

Early detection: 12 s

Max. infrasound amp.: 561 mPa Max. seismic amp.: 75 µm/s Duration of event: 2099 s Peak-frequency band: 5-15 Hz

(a) Infrasound time series;(b) Seismogram;(c) Average amplitude of the frequency bands of the infrasound signal;(d) Average amplitude of the frequency band of the seismic signal;(e) Running spectrum of the infrasound signal;(f) Running spectrum of the seismic signal;

Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.

Debris Flow on 16.08.2015

Precipitation and discharge of the debris flows on 16.08.2015

Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

AMM-Detection

"Automatic Detection and Identification of Alpine Mass Movements based on Infrasound and Seismic Signals"

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Infrasound and seismic waves of debris flows

(Kogelnig 2012)

Infrasound:

- Signal source is the collision of stones (vibrations)
- Sound pressure between 0,1-10 Pa
- Peak frequencies
 5-15 Hz (debris flow)
 - 5-15 HZ (debris flood
 - 15-30 Hz (debris flood)

Seismic waves:

- Signal source is the collision of stones with the channel
- Amplitudes between 5-500 µm/s
- Peak frequencies 10-30 Hz

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Used components

- Microcontroller: Luminary LM3S8962
 50 MHz ARM-Cortex-M3 Processor
 4 ADC-Channels 100 Samples/s
- Infraschall sensor: Chaparral Model 24

Sensitivity 2 V/Pa, frequency range 0,1 Hz – 50 Hz

or **MK-224**

Sensitivity 50 mV/Pa, frequency range 3 Hz – 200 Hz

- or **Electret Condenser Micophone** KECG2742WBL-25-L Sensitivity -42±3 dB, frequency range ~20-20000 Hz
- Seismic sensor: Geophone Sercel SG-5 Sensitivity 80 Vs/m, Natural frequency 5 Hz

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Functions of the warning system

Display: Display of current values, system settings and parameters detection-alg.

SD-Card:

Max. 16 GB memory card Recording time 148 days (3560 hours-files) Log-Files (3 types)

Output: Alarm 3 V (relay control) 2 Alarm levels (magnitude) Modem control (timed switch on/off) Camera - triggering on alarm

> **Signal adaptation:** Filtering by RC-network Adapting the input signals with an inverting amplifier circuit

Input:

- Infrasound signal
- Seismic signal
- Level (ultrasonic or radar gauge)
- Power supply (12 V, consumption
- <1.5W!; supervision possible)

Network: 100 Mbit Ethernet Web server (remote control) Time from time server E-Mail alert

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Signal processing

- Removing the DC-component by RC-high-pass with a cutoff frequency of ~1 Hz
- Adaptation of the signal to ADC input with an inverting amplifier circuit → Infrasound: 400 mV/Pa; Seismic: 8 mV/µm/s
- Sampling at 100 samples/s, transforming into physical dimensions (Anti-aliasing: 32x Hardware oversampling)
- Calculation of the frequency spectrum using Fast Fourier Transformation per second, 100 FFT samples (FFT Bluestein algorithm)

Detection-Algorithm

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Current Detection-Algorithm

Infrasound Signal:

Amplitude-Criteria - Level 1 / Level 2:

Amplitude of the debris flow / debris flood frequency band exceeds a limit for a certain time-period

 $avAmp_{DFlow} \ge AmpLimitL1$ or $avAmp_{DFlood} \ge AmpLimitL1$ $avAmp_{DFlow} \ge AmpLimitL2$ or $avAmp_{DFlood} \ge AmpLimitL2$

Distribution-Criteria:

Amplitude of the debris flow / debris flood frequency band is greater than the amplitudes of the frequency bands above and below

 $avAmp_{DFlow} > \frac{avAmp_{high}}{avAmp_{low}}$ or $avAmp_{DFlood} > \frac{avAmp_{high}}{avAmp_{low}}$

Variance-Criteria:

Variance of the amplitudes below a certain value (to eliminate artificial noise)

 $AmpVar_{DFlow} \leq VarLimit$ or $AmpVar_{DFlood} \leq VarLimit$

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Current Detection-Algorithm

Seismic Signals:

Amplitude-Criteria - Level 1 / Level 2:

Amplitude of the debris flow / debris flood frequency band exceeds a limit for a certain time-period

 $avAmp_{DFlow/DFlood} \geq AmpLimitL2 \\ avAmp_{DFlow/DFlood} \geq AmpLimitL1$

Variance-Criteria:

Variance of the amplitudes below a certain value (eliminate artificial noise)

 $AmpVar_{DFlow/Flood} \leq VarLimit$

Detection:

All criteria for both signals (seismic and infrasound) are met.

Current Detection-Algorithm

Scheme of the event detection - debris flow infrasound signal:

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Current Detection-Algorithm

Current parameter values:

		Infrasound signal	Seismic signal
Frequency band 1	FB1 _{low} - FB1 _{high}	3 to 5 Hz	-
Frequency band 2 - debris flow	FB2 _{low} - FB2 _{high}	5 to 15 Hz	10 to 30 Hz
Frequency band 3 – debris flood	FB3 _{low} - FB3 _{high}	15 to 35 Hz	10 to 30 Hz
Frequency band 4	FB4 _{low} - FB4 _{high}	35 to 50 Hz	-
Limit for Amplitudes - Level 1	AmpLimitL1	10 mPa	0,4 µm/s
Limit for Amplitudes - Level 2	AmpLimitL2	30 mPa	1,2 µm/s
Limit for Variance	VarLimit	0,6	0,6
Time span for detection	T _{det}	12 s	12 s

Improvement of process identification and discharge measurement by the combination of different sensors A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Test sites since 2013

• Debris flow (Illgraben, Marderello since 2015)

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Improvement of process identification and discharge measurement by the combination of different sensors A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Example for detection

Comparison infrasound spectrum Debris flow Lattenbach – Debris flood Dristenau

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Example for detection

Debris flood on 28.7.2009 Illgraben (Wallis, Switzerland) Early detection: 89 s

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris flood on 31.7.2014 Farstrinne (Tyrol) Early detection: 99s

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Example for detection

Debris flood on 9.8.2015 Marderello (Italy)

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Results - Test sites

Debris flow / debris floods, season 2013 - Number events / detections

Test Site	Number events			Detections			False alarms
Size:	very small <100 mPa	small >100 mPa <400 mPa	medium >400 mPa	very small <100 mPa	small >100 mPa <400 mPa	medium >400 mPa	
Lattenbach	0	0	0	0	0	0	4
Warschenbach	8	3	1	2	2	1	0
Farstrinne	0	0	0	0	0	0	0
Dristenau	18	4	4	12	3	4	2
Schüsserbach	2	3	1	0	2	1	0
Overall:				50 %	70 %	100 %	6

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Results - Test sites

Debris flow / debris floods, season 2014 - Number events / detections

Test Site	Number events			Detections			False alarms
Size:	very small <100 mPa	small >100 mPa <400 mPa	medium >400 mPa	very small <100 mPa	small >100 mPa <400 mPa	medium >400 mPa	
Lattenbach	3	0	0	2	0	0	0
Farstrinne	0	0	2	0	0	2	0
Dristenau	10	1	1	4	1	1	1
Schüsserbach	0	0	0	0	0	0	0
Overall:				45 %	100 %	100 %	1

Further points of research

- Estimation of event size (magnitude, deposit) *
- Determination of process-type (viscosity) *
- Determination of the duration of the event
- Localization of the event (sensor array)

*) ÖAW ESS-Project:

"Identification of sediment-related disaster based on seismic and acoustic signals"

A. Schimmel and J. Hübl Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris flow - Test sites

