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Background and Field Site
Although a number of energy balance studies have been performed 
on debris covered glaciers in the Alps [Reid and Brock, 2010] as 
well as in the Himalaya [Rounce et al. 2015], there are still 
significant shortcomings in understanding processes in the surface 
boundary layer as well as the energy transport through the debris 
layer. Additionally field data is still scarce as measurements on the 
debris surface are difficult and with a heterogeneous debris surface 
spatial variability is likely important.

We have collected meteorological data on the tongue of Lirung 
Glacier in the Langtang catchment between 2012 and 2014, 
generally from May until October and once during the winter 
months. The catchment is located 60 km north of Kathmandu. The 
debris covered tongue extends from ca 4000 m asl. to 4400 m asl. 
and is disconnected from the accumulation zone on the 
surrounding head walls [Ragettli et al. 2015].

Motivations, Methods and Challenges
An established EB model [Reid and Brock, 2010] is slightly adapted 
for the monsoon climate which has strong differences between the 
wet and dry seasons. Additionally a Monte Carlo sensitivity analysis 
was integrated.
It was found that

(a) essential input data is variable in space, between seasons 
and between years

(b) the uncertainties from the stake measurements are large 
as debris movement tilts stakes

We attempt to show here the variability of some of this input data 
and how that affects model outputs.

Field Data
We measured shortwave radiation, air and surface temperature as 
well as relative humidity and wind speeds and directions at the 
AWS. The AWS in 2012 was placed on top of a mound, while in 
2013 and 2014 it was in a depression (Figure 2). Additionally air 
and surface temperature was measured at different TLoggers 
(Figure 1 and 2).

The most variable data is likely wind as well as surface temperature 
data [Steiner and Pellicciotti, 2016]. This has consequences for the 

SBL and subsequently the suitability of turbulent fluxes (Figure 4 - 
7). Additionally debris thermal conductivity values have varied 
between 0.5 and 6 between the years and seasons and there was 
no clear indication of when which value would be applicable. We 
also show that albedo varies strongly over the season and during 
the day even just for one location (Figure 8).

Results
Below we show model runs with conductivity values ranged 
between 1.4 and 1.7 for the wet and 0.94 and 1.14 for the dry 
season based on Literature [Nicholson and Benn, 2006/2012] and 
own thermistor data.

Conclusion
- we need to get a better understanding of debris thermal 

conductivity under local conditions also considering water content
- we need to understand the variability of turbulent fluxes
- using high-res DEM (photogrammetry, UAV) a distributed surface 

roughness could be implemented
- variability of albedo in space could be derived from satellite 

imagery
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Figure 1: An overview of Lirung glacier showing the AWS location as well as the TLogger 
positions with stakes associated.

Figure 2: Crosssections through the tongue of the Lirung glacier showing the locations of the 
AWS. The heterogeneity of the surface is apparent.
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Figure 4: Wind speed (top) and direction (bottom) in 2012 (red), 2013 (blue) and 2014 
(green).
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Figure 9: Shortwave radiation (left) and relative humidity (right). The data is stable for the 
earlier and the model relatively insensitive to differences in the latter. (red: 2012, blue: 2013, 
green: 2014)
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Figure 7: Richardson Number derived from TLogger data and wind measurements for all 
three years.
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Figure 5: Wind speed (top) and direction 
(bottom) measured at two locations 100 
m apart on a debris mound and in a 
depression.
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Figure 6: Wind speed ( top) and 
temperature both from 2 m towers placed 
next to the AWS for two weeks.
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Figure 10: Stake Measurement Data from two seasons compared to debris thickness.

Figure 8: Annual albedo as well as diurnal cycles (inset) at the location of the AWS
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Figure 11: Variability of modelled melt only by varying k_d. The stars mark stake 
measurements. The stake is located next to the AWS.
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