

CHEMICAL SPECIATION OF PM_{2.5} IN MAJOR CITIES WORLDWIDE

Graydon Snider

Halifax, NS, Canada

April 18th, 2016

SPARTAN Team

Graydon Snider, Crystal L. Weagle, Kalaivani K. Murdymootoo, Amanda Ring, Yvonne Ritchie, Emily Stone, Ainsley Walsh, Clement Akoshile , Nguyen Xuan Anh, Jeff Brook , Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Brent N. Holben, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, S.N. Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Michael Brauer, Aaron Cohen, Mark D. Gibson, Yang Liu, J. Vanderlei Martins, Yinon Rudich, Randall V. Martin

AS3.21 (R. 2.91), Megacities session

GLOBAL SIGNIFICANCE OF PM25 Dhaka Beijing > 50 µg m⁻³ > 70 µg m⁻³ 1 PM_{2.5} particle ≤ 2.5 microns t irritation Rehovot Hanoi igle15-150 µg m⁻³ > 40 µg m⁻³ lung problems, even lung cancer WHO target of $PM_{2.5} = 10 \ \mu g \ m^{-3}$ • Adverse lung, cardiovascular effects ۲ 3 million* annual deaths worldwide (3% of all deaths)

NEED TO EVALUATE SATELLITE-DERIVED PM2.5

SPARTAN = SURFACE PARTICULATE MATTER NETWORK

SPARTAN Headquarters: Dalhousie U, Halifax NS

Urban Areas:

- -Beijing
- -Kanpur
- -Hanoi
- -Buenos Aires
- -Dhaka
- -Manila
- -Rehovot

Ongoing measurements of ground-level PM_{2.5} collocated with AOD measurements (sun photometer)

 Each site collocated with sun photometer (AERONET)

SPARTAN INSTRUMENTS

Each SPARTAN station includes two instruments*:

SPARTAN: DATA PROCESSING SEQUENCE

FILTER WEIGHING

- Cleanroom facility (< 100 particles/cm³)
- Follows USEPA protocols:
 - T-range: 20 25 °C
 - RH-range = 30 40 %
 - Daily mass calibrations

DECONSTRUCTING FILTER MASS

(acid-digested metals) (water-soluble ions)

•

Surface reflectance (Black Carbon)

Species	Rel. Composition
Soil = {Mg, Al, Ti, Fe}	<mark>8 – 23</mark> %
Sea Salt = {Na}	I – 10%
Trace Element Oxides = {V, Zn, As, Cd, B	a, Pb} < I %
Ammonium nitrate = {NO ₃ }	2 – 10%
Ammonium sulfate = {SO ₄ , NH ₄ }	5 – 26%
Effective Black Carbon = {Reflectance}	2 – 13%

AEROSOL COMPONENTS

GLOBAL PM_{2.5} COMPOSITION

SPECIATION TRENDS

ESTIMATING PARTICLE-BOUND WATER (PBW)

Hygroscopicity parameter (κ-Kohler theory):

$$\kappa_{m,tot} = \frac{1}{M} \sum_{X} m_X \kappa_{m,X}$$

 $f_m(RH) = 1 + \kappa_{m,tot} \frac{RH}{100 - RH}$

$$PBW = M \times (f_m(35\%) - 1)$$

- I. Average *k* over **PM components**
- 2. Set RH to 35%
- 3. Add to water total mass

0.00 0.05 0.10 0.15 0.20 0.25

Κ

2.0

1.9

1.8 -

1.7 -

1.6

1.5

1.4

 $f(RH)^{1/3}$

____1.3

H 1.2

Duplissy et al. ACP, 11, 1155-65, 2011

WATER-MASS CONTRIBUTION

HOURLY PM_{2.5} ESTIMATES

G. Snider, C. Weagle et al.: ACPD, 2016.

TRACE ELEMENTS: CRUSTAL ENRICHMENT FACTORS

-Crustal Average via Taylor and McLennan, Rev. Geophys., 33(2), 1995. -Snider et al, ACP in prep, 2016

CORRELATIONS OF SPECIES

All-site weighted average:

SUMMARY

- Ongoing PM_{2.5} and AOD measurements in urban areas:
 hourly, seasonal, and multi-year time spans
- Characterizing PM_{2.5} mass, composition at a single facility, using standardized methods
- Aerosol components show multi-site correlations, trends
- We encourage ideas for new partnerships. For more information, please visit **spartan-network.org**

SPARTAN is an IGACendorsed activity

SPARTAN is Funded by NSERC

17

THANK YOU/DANKE SCHÖN

Dalhousie Co-op Students

Myself: Graydon Snider graydon.snider @dal.ca

Crystal Weagle, PhD Candidate

SPARTAN Site Collaborators

Clement Akoshile , Nguyen Xuan Anh, Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, S.N. Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Yang Liu, Yinon Rudich

Prof. Randall Martin

EXTRAS: SPARTAN DATA ONLINE

www.SPARTAN-network.org/interactive

EXTRAS

