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Glaciation driving eruption behaviour
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Glaciation driving eruption behaviour

In an subduction zone setting (different melting mode)
whether, or how, the volcanoes respond remain inconclusive.
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Case Study: Mocho-Choshuenco
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Case Study: Mocho-Choshuenco
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Eruption Flux
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Can use edifice volume to approximate effusive flux (~0.5 km3/kyr) and composition to
approximate intrusive flux.




Temperature, magnitude and composition
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Melt composition
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Summary of observations at M-C
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Influence of glacial unloading

. Changes 1n magma flux info the crust with time?

- In subduction setting melting rates are thought to be governed
primarily by subduction inputs and parameters

- Make first order assumption magma fluxes into the crust are
approximately constant

. Changes 1n timescales of magma storage within the

crust
- Ice unloading will change the regional stress field, which
influences dyke formation
- Ice load will cause magma to ““stall” leading to magma
accumulation 1n the crust during glaciation
- Unloading during deglaciation enables dykes to form/widen

Jellinek et al., 2004




The Hypothesis
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Neighbouring Volcanoes
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* Significant changes in eruption behaviour on millennial

timescales
- Eruption size and frequency, magma composition and temperature etc.
- E.g., from periods of large, evolved eruptions to small mafic eruptions
- Requires high resolution records to see temporal changes

* Changes in timescales of magma storage within the crust?

- Explains temporal variations
- Maybe driven by changes in the crustal stress regime due to glaciation
- The magnitude of these variations will differ between volcanoes
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