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Turbulent Dense Currents 

 

 

Density Current Formation

Baines & Condie (1998)

 Gravity current overflows: Major pathway 
for deep water replenishment - ocean 
circulation and climate predictions [Legg et 
al., 2009].  

 Shear instabilities: interfacial layer between 
dense waters and ambient waters. 

 Mixing controls the downstream evolution 
of T and S, the equilibrated outflow’s 
ultimate composition is controlled by 
upstream turbulence.  

 Proper accounting of processes controlling 
cumulative entrainment is a prerequisite for 
predicting terminal depth and volume flux, 
properties that can dynamically alter global 
circulation patterns.  
 



Motivation Global coupled ocean-atmospheric model (Grid-
100km) cannot resolve overflows 

 
Significance of Overflows 

O: Overflow across a topographic 
barrier from a regional basin into the 
open ocean (Nordic seas North Atlantic, 
Subtropical Med, Red seas ) 

B: Open-ocean overflow into 
an isolated regional basin. 
 C: Cascade of dense water from a 
continental shelf  into deep over over 
sloped sea floor ( Antartica, Ross Seas) 
 

Overflow Representation in Models seriously 
deficient: Numerical challenge 



Numerical Studies: Lock-exchange Release 
Density Currents 
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Lobe-cleft Instabilities 

Current Body 

Current Tail 

 
→  simulation corresponds to a laboratory scale current, not field scale! 

Reynolds numbers are Orders of magnitude smaller. 

Shear instabilities (e.g. Kelvin-
Helmoltz instabilities) are key 
for mixing in overflows (and 

lock-exchange) 



Scientific Questions 
(1) What is the difference in Entrainment between lock-

exchange and overflows ? LES/DNS  

(2)  What is governing physics for mixing in these lock-
release and overflows ? Energetics (TKE production) 

(3) How to bridge gap between field-studies , ocean 
circulation models and DNS/LES ? 
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Ilicak (2014) Ocean Modelling: Lock-
exchange release flows ( M.E. =  irreversible 
mixing /irreversible mixing+dissipation) 

Mixing efficiency in Ocean-
Circulation models =0.2  

Mixing Efficiency – Fraction of available 
energy released to K.E converted into 

irreversible increase of potential energy  



Numerical Tool 

Large-Eddy-Simulation 

Finite-volume, Smagorinsky 
based 2nd order space  & 
time. (EFM, 2016, review) 

Direct-Numerical Simulation 

Immersed boundary method 
Boussinesq approximation – 
4th order velocity-vorticity 
form of N-S. 

4th order compact-finite 
difference, Runge-Kutta 

(Bhaganagar, JHR, 2014) 
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Calculation of Entrainment: Numerical Challenges 

• E=Vt-V0(t)t*l(t)*v(t)  
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E(t) =
<V (t) > - <V (to ) >

(l)(u f )(t)

V (t) = h(x, t)dx
xo

xf

ò



Lock-Exchange Flows 2-D Framework  

1. Increasing slope enhances 
Re, E down the slope 

2. K-H instabilities intensify 
unlike 3-D case 
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Lock-Exchange 3-D framework- 
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10 %  density threshold (white dotted line) and original density fluid (black solid line) 
interface in (top) 2-D Simulations; (bottom) 3-D simulations for horizontal 



3-D Lock-Exchange Currents: Density Structures 
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3-D Lock Exchange Energetics 
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Figure 1. Energetics in slumping phase in reference frame overlaid by density contour (black 

dotted line) (a) mean shear, (b) Reynold Stress, (c) Buoyancy Flux 

 

 

Figure 1. Energetics in slumping phase in reference frame overlaid by density contour (black 

dotted line) (a) TKE production from shear, (b) TKE production from buoyancy, (c) TKE 
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EFFECT of SLOPE on 
3-D Lock Exchange 

CURRENTS 
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Turbulence Structures in 3-D Lock Exchange 
Flows 
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Evolution of Vorticity Fields in 3-D Lock  
Exchange Flows  
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3-D Overflows 
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Front speed is proportional to cube root of the buoyancy flux (go
'Q)

1/3  for dense currents over slopes and it depends on 

the Reynolds number. 
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Slope =0 
(top) shear 
production 

(lower) 
buoyancy 

production 

Slope =10 o 
Shear 

Production 
Buoyancy 

production 
of TKE 

OVERFLOWS 

SHEAR AND BUOYANCY PRODUCTION OF TKE 
INCREASE Order for slope of 10o 



Entrainment between L-E and 
Overflows 
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Mixing of Lock-Exchange Flows vs. Overflows 
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Overflows 

LE 

OVERFLOWS: 
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DILUTION AT 

HEAD  



ENTRAINMENT PARAMETER & MIXING EFFICIENCY vs. Re 
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SMOOTH 

ROUGH 

ROUGHNESS ENHANCES MIXING 



CONCLUSIONS 
- DNS/LES of L-E, overflows over sloping surfaces performed for 

lab-range of Re. 
- Calculation of E:  threshold, front location. 
- Shear and buoyancy production play role in TKE generation for 

L-E and Overflows over slope -> parameterization needs to be 
based on TKE production 

- Reduced gravity in current vs. head - Overflows and L-E exhibit 
differences 

- L-E entrain higher than overflows due to enhanced K-H 
instabilities. 

- Roughness enhances entrainment quite significantly beyond 
head region. 
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