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Plants exhibit various responses to soil mois- We design a control case that reproduces a We vary the water stress response in the con-
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ture stress, which are difficult to categorize and
parameterize in land-surface models. Misrepre-
sentations of plant water-stress in such models

sunny summer day above a maize crop in the trol case (y-axis), as well as soil moisture (x-axis).
Netherlands [1]. We introduce a flexible plant water-
stress function 3 (see Fig. 2) that multiplies the net
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we explore the impact of simulating two extreme
water-stress responses under dry soil conditions.

Fig. 3: Low and high surface coupling regimes defined

We summarize our findings in Box 7. with the stomatal conductance g

Fig. 2: Modeled plant water-stress responses.
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We use a diurnal land-atmosphere (L-A) mod-

eling framework, called the MXL-A-gs model.

Our model represents the daytime surface fluxes TAKE-HOME MESSAGES 8. WORK PUBLISHED IN

of carbon (green), water (blue), and energy (red

circles) coupled to the dynamics of a convective Different plant water-stress responses are currently used in land-surface models (problem) [1] N{ fomse et al. (2013) Two pelﬁpecti‘{es }(Im tlhe cou-
boundary layer (see Fig. 1). Its strength is to in- Plants with less sensitive responses increase the land-atmosphere coupling strength (Fig. 3) Eoinézrryoﬁ’yve\ft;ozgos2?;2?’ exchange In the planetary

clude the essential diurnal processes of the L-A in
a concise manner. Note the two coupling points
(in purple) at the surface and at top of the ABL.

Plants insensitive to water stress delay atmospheric warming during dry spells (Fig. 4) [2] M. Combe et al. (2016) Plant water-stress parameteri-

The chosen water-stress response influences the model sensitivity to atmospheric factors (Fig. 5) zation determines the strength of land-atmosphere cou-
pling, Agriculture and Forest Meteorology.



