

Two-way against one-way nesting for climate downscaling using LMDZ

Shan LI, Laurent LI, Hervé LE TREUT Shan.Li@Imd.jussieu.fr

Laboratoire de Météorologie Dynamique (LMD) Institut Pierre Simon Laplace (IPSL) Université Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, FRANCE

Thursday, 21 April 2016, Room 0.31, Austria Center Vienna (ACV) CL5.09 Regional climate modeling, including CORDEX

Introduction Part 1 Methodology Part 2 OWN Part 3 TWN

Conclusion

Evaluate the methodology of climate downscaling

Somot (2012)

Conclusion

Two approaches of downscaling

CORDEX project	Perfect TV	GCM /N implementation	
Reference	GCM	LMDZ-global (atmosphere-continent)	
OWN	RCM	LMDZ-regional	
TWN	Coupling GCM-RCM	Coupling LMDZ-global and LMDZ-regional	

same spatial resolution, over 80 years

Research objectives

Evaluate the methodology of one-way nesting What is the imperfections of traditional downscaling?

- Test the performance of two-way nesting
 - Can two-way nesting system improves performance of RCM?
 - Is there more natural effect of climate variability?

Part 3 TWN

Conclusion

One-way nesting system (OWN)

atmospheric component of the IPSL model

LMDZ – global SST (climatology)

research domain (including Euro-CORDEX domain)

$$\frac{\delta X}{\delta t} = M(X) + \frac{(Xreference - X)}{\tau}$$
$$\tau = 90 \ minutes$$

LMDZ – regional

Conclusion

Issues with one-way nesting

- bad continuity
- internal dynamics

climatology difference of 2-meter temperature in Autumn (Sep.-Nov.) OWN – reference

with the 95% confidence interval

Conclusion

Two-way nesting system (TWN)

Part 1 Methodology Pa

Part 2 OWN

Conclusion

2-meter temperature in Autumn TWN – reference

Introduction

climatology difference of 2-meter temperature in Autumn between TWN and reference simulation with the 95% confidence interval global climate change due to **feedback** from the region

Part 3 TWN

fewer drawbacks of boundaries

Impact of two-way nesting (TWN – OWN)

climatology difference of 2-meter temperature in Autumn between TWN and OWN for study area with the 95% confidence interval Part 1 Methodology Part 2 OWN

Introduction

Part 3 TWN

Conclusion

TWN allows more variability than OWN Differences of standard deviation with the reference

in Autumn for different components (PC)

Discussion and Outlook

OWN: constrained conditional model

- bad continuity
- internal variability
- boundary conflict (temperature, precipitation, different levels of geopotential of all seasons)

TWN: derivative model

- degrees of freedom is more important ullet
- global climate change due to feedback from the region ullet
- natural climate variability, less inconsistency of more igodolboundaries

Physical mechanism ?

Thanks for your attention

Shan.Li@lmd.jussieu.fr

