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World Energy The Gas Transport Model: an advection-diffusion equation for the pressure field
;m&;. 5 dy naturalgas production by souree, 1950 op (’92 p This is a transport model for the pressure field p(x,t). It contains many (about 20) parameters,
ren e —+U(p, p, ) f(p), and the same number of compressibility coefficients, &.
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FKa The porosity, and the permeability are the two most important rock characteristics and they play
a central role in the model.
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The apparent velocity U(p,p,) and the apparent diffusivity D(p) are complicated functions of
U (p, px): _53( p) D( p) & &(p); so they are also functions of the pressure and the pressure gradient, making this a highly
nonlinear system.
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: F=|1+£K Llul This is a simplified 1D version of the 3D transport model. See [1--4] for details.
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1990 2000 2010 2020 2030 2_?___10 1 d ( .I: ( p)) p(X,t) — pressure fleld; U -- apparent VGIOCity; D -- apparent dlfoSlVlty,
e E.(p) = Ka — apparent permeability; 5 — turbulence factor; u — viscosity; p— density;
2011 2040 P dp & and & - compressibility coefficients.
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Nano scale pore radius means that various flow regimes must be accounted for:
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Conglomerate Knudsen Flow

These are characterized by the Knudsen number Kn = mean free path/pore radius

The Forchchiemer’s correction for high velocity is included.
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All model parameters and their associated compressibility coefficients are functions of the

—
\\ \\& SN pressure, = f(p), & = &(p).

Fossil Limestone

Limestone Results: A. Determining rock properties
280, 5
Model Realism 2 135 kPa Experimental data (symbols) from pressure puls_e tests in a_shale ro_ck core sample of length
240, . o 170kPa 3mm, from Pong [5], was matched from simulations (solid lines) using the new transport model
The transport model is obtained as a partial - ’ 23?;: developed here. T_he data_ IS In the form of pressure measurements at various stations along the
differential equation for the pressure field, from A 7o kP core sample, for _dlfferent Inflow pressures P;, as shown on th_e flgures,_left. The steady-state
consideration of mass conservation and momentum ool model was used in this case._T_he_ model parameters were adjusted until the error between
conservation. Physical realism is incorporated in to = simulations and data were minimized.
the model by including important effects due to: g 120
2 0 05 1 15 2 25 3 Fig. 1 (Top). Best fit model using steady-state transport model without turbulence correction,
* Different flow regimes that exist in the pores % 50— | | | | £ = 0. The porosity is ¢ ~ 20%, and permeability is K ~ 10° nD. These are very large, but
« Adsorption and desorption of gas from the rock & . i comparable to Civan’s model [6,7] results.
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* Forchchiemer’s correction due to high speed ) ) ¢ 205kPa Fig. 2 (Bottom). Best fit model using steady-state transport model with turbulence correction,
* Pressure dependent correlat_lons - e ) s, 2;‘2 t: f # 0. The porosity is ¢ = 10%, and permeability is K = 100 nD. These are much more realistic of
* Nanoscale of pores which is characteristic of oo - - | shale rocks than from previous models, such as Civan’s model [6,7].
shale rocks 0 .
120.\\\C\§ This illustrates the importance of including high velocity correction term in the model.
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Computational Method

Distance, X [mm]

The numerical solver was developed using an

implicit finite volume method with a flux limiter.
Currently, the solver is applied to 1D flows.

Results: B. Sensitivity analysis of model parameters
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Conclusions

* A new nonlinear shale gas transport model has been developed incorporating greater realism than previous studies, yielding more realistic
values for rock properties than previous models.

* For optimal generality in application, all model parameters must be kept in the model as pressure dependent quantities. (Previous models of
often neglected some parameters or made them constants.)

« To determine rock properties accurately, high values of P;,, should be used in experiments.
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