Although true-triaxial testing (TTT) of rocks is now more
extensive world wide, stress-induced heterogeneity due to the extensive worldwide, stress-induced heterogenenity due to the
existencof several loding boundary effects is not usually existence of several loading boundary effects is not usually
accounted ofr and simplified anisortropic models are used.
This study focusese on the ennanced anisotropic velocity This study focuses on the enhanced anisotropic velocity
structure to improve acoustic emission (AE) analysis for an
enhanced interpretation of induced fracturing. Data from a strucure to improve acoustic emission (AE) analysis fro an
enhanced interpretation of induced fracturing. Data from a
TTT on an 8 am-side cubic sample of Fontaineleau TTT on an 80 mm-side cubic sample of Fontainebleau
sandstone is used in this study to evaluate the methodology.
At different stages of the experiment the True-Triaxial sandstone is used in his stuay to evaluate the methodology.
At differet stages of the experiment the True-Trixial
Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several
velocity surveys to image velocity structure of the velocity surveys to image velocity structure of the
sample. Going beyona a hydrostatic stress state ppor-alatic
phase), the rock sample went through a non-dilatational phase), the rock sample went through a non-dilatational
elastic phase, a dilatational non-damaging elasto-plastic phase
containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The
experinent was divided experiment was divided into these phases based on the
information obtained from strain, velocity and AE streaming
 data. Anaysis of the ultrasonic velocity survey Cata
discovered that a homogeneous anisotroic core in the eenter
of the sample is formed with ellipsoidal symmetry under the of the sample is formed with elipsoidal symmetry under the
standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity
models for the sample starting from homogeneous the sample starting from isotropic and
medels going toward anisotropic and
het and heterogeneous models. . ghe try tonsducer shot locations showed
a major improvement atfer the velocity a majo improvement after the velocity model corrections had
been applied especially at the final phase of the evperiment This location impecialy at the final phase of the experiment the final phase of the experiment consisting lower-velocity
zones beni anisotropic velocity model was also verified at the core of the cubic rock specimen by AE even location of transducer
shots. AE of the rock during the whole experiment recorded by the surrounding transducers were invesperitimaten by beordeation
methods developed for anisotropic heterogeneous medium methods developed for anisotropic heterogeneous medium
where, the M-shape fracture pattern was observed. AE events occurred in the vicinity of the dilation pseudo-boundaries
where, a relatively large velocity aradient was foumer and where, a relatively large velocity gradient was formed and
along paralel flactures in the $\sigma 1 / \sigma 2$ plane. This research is
contributing to eenes along parallel fractures in the $\sigma 1 / \sigma 2$ plane. This research is
contributing to enhanced AE interpretation of fracture
growth processes in the rock under lober growth processes
stress conditions.

The features in yellow as well as
the semi-curves in brown shown
the semi-curves in brown shown
in the CT scan image of the rock
were almost observed by the AE
source locations. In total, we were

Acknowledgements We a clinowledede Dr MH

Key Reference

