

Fig.1. The model takes into account 10 excited states of molecules of oxygen $O_2(b^1\Sigma_g, v=0-2), O_2(a^1\Delta_g, v=0-5)$ and metastable atom $O(^{1}D)$ and more than 60 aeronomical reactions.

Sloping lines – the processes of O_2 and O_3 photolysis. Double vertical lines – the processes of solar radiation absorption in the 762 nm (g_{α}), 688 nm (g_{β}), 629 nm (g_{γ}) and in the 1.27 μ m (g_{IRa}) bands. Slant lines – energy transfer from O(¹D) to the O₂($b^{1}\Sigma^{+}_{g}$, v=0, 1) and from $O_2(b^1\Sigma_g^*, v=0)$ to $O_2(a^1\Delta_g, v=0-3)$ and from $O_2(b^1\Sigma_g^*, v)$ at collisional quenching. Dashed lines – the processes of V-V and V-T relaxation. Red line – the processes of radiative emissions from $O(^1D)$ (630 nm). Green lines – the processes of radiative emissions from electronic-vibrational levels $O_2(b^1\Sigma_g^+, v=0-2)$. Brown lines – processes of radiative emissions from $O_2(a^1\Delta_g, v=0)$ to $O_2(X^3\Sigma_g, v=0, 1)$. All emissions could be used as proxies of $[O_3]$ and $[O(^3P)]$ in MLT.

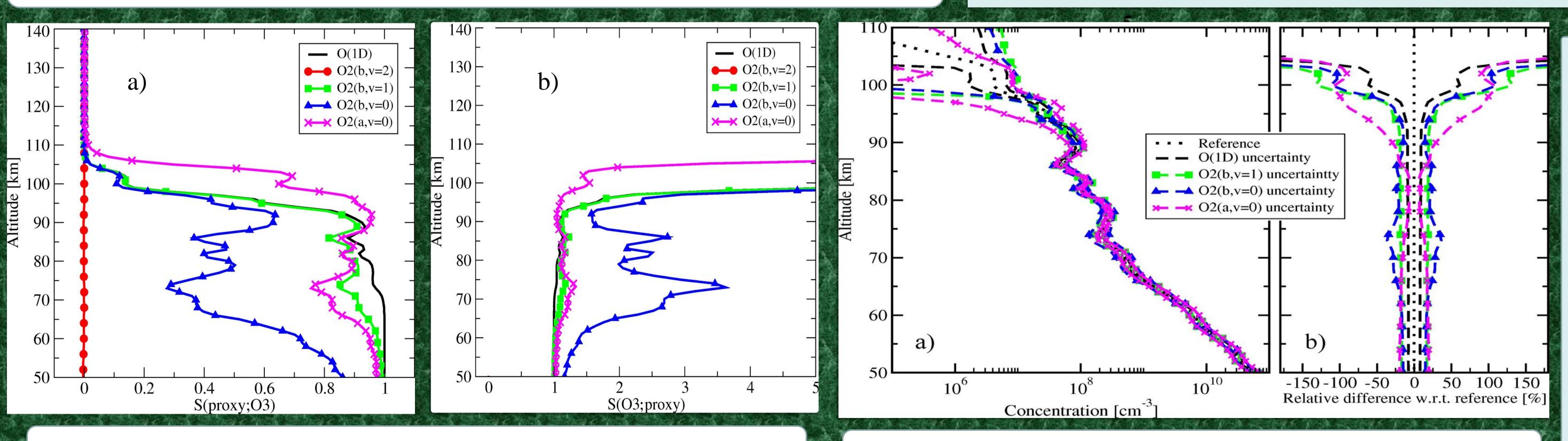


Fig.2. a) Sensitivity coefficient of the proxy concentration to $[O_3]$ for the **forward** problem, *S*(*proxy; O*₃). b) Sensitivity coefficient of $[O_3]$ to the proxy concentration to for the **inverse** problem, $S(O_3; proxy)$, with filled squares; $O_2(b^1\Sigma_g^+, v=0)$ –blue line with filled triangles; $O_2(a^1\Delta_g, v=0)$ – rose line with crosses. Optimal proxies for $[O_3]$ retrieval are: $O_2(b^1\Sigma_g^+, v=1)$, $O_2(a^1\Delta_g, v=0)$ and $O(^1D)$.

Why the oxygen IR emission at 1.27 µm is not the best method for ozone retrieval in the mesosphere? Rada O. Manuilova, r.manuylova@spbu.ru, Valentine A. Yankovsky*, vyankovsky@gmail.com, Saint-Petersburg State University, Department of Atmospheric Physics

In the framework of model of electronic vibrational kinetics of excited products of O_3 and O₂ photolysis in the MLT of the Earth, YM2011, we have tried to answer the formulated above question. In our study we propose to retrieve the $[O_3]$ using as proxies electronic-vibrationally excited levels of oxygen molecule, namely $O_2(b^1\Sigma_g^+, v=0, 1)$, $O_2(a^1\Delta_g, v=0)$ and excited atom $O(^1D)$ (Fig. 1). Population of $O_2(b^1\Sigma_g, v=2)$ doesn't depend on $[O_3]$ (Fig. 2). Concerning the $[O_3]$ retrieval in the range of 50–100 km, the emission at 1.27 µm formed by transition from $O_2(a^1\Delta_g, v=0)$ and emission at 762 nm formed by transition from $O_2(b^1\Sigma_g^+, v=0)$ are the most intensive ones among all emissions under consideration. However, considering the complexity of kinetics of the excited components: choosing $O(^1D)$ as a proxy for $[O_3]$ retrieval, requires taking into account five aeronomical reactions. For other proxies the number of aeronomical reactions is as follows: $O_2(b^1\Sigma_g^+, v=1) - 13; O_2(b^1\Sigma_g^+, v=0) - 18; O_2(a^1\Delta_g, v=0) - 25.$ Increasing the number of reactions that must be considered when using a proxy from O(¹D) to O₂($a^{1}\Delta_{g}$, v=0) depends on the fact that, calculating the population of each of the underlying electronic-vibrationally excited state requires considering the mechanisms of the population of the upper levels. Using the $O_2(a^1\Delta_g, v=0)$ is also associated with the problem of poorly known rate coefficients for some important processes. For example, the rate constant of reaction $O_2(a^1\Delta_g, v=0) + O(^3P) \rightarrow products$ is known with uncertainty 200%, $O_2(b^1\Sigma_g^+, v=0) + O(^3P) \rightarrow products$ (with uncertainty 25 - 300%), $O_2(a^1\Delta_g, v \ge 1) + O_3 \rightarrow products$ (with uncertainty 43%) etc.

Fig 3. Uncertainties of $[O_3]$ retrieval (the limits $\pm \sigma$) for different proxies: a) absolute values, b) relative values.

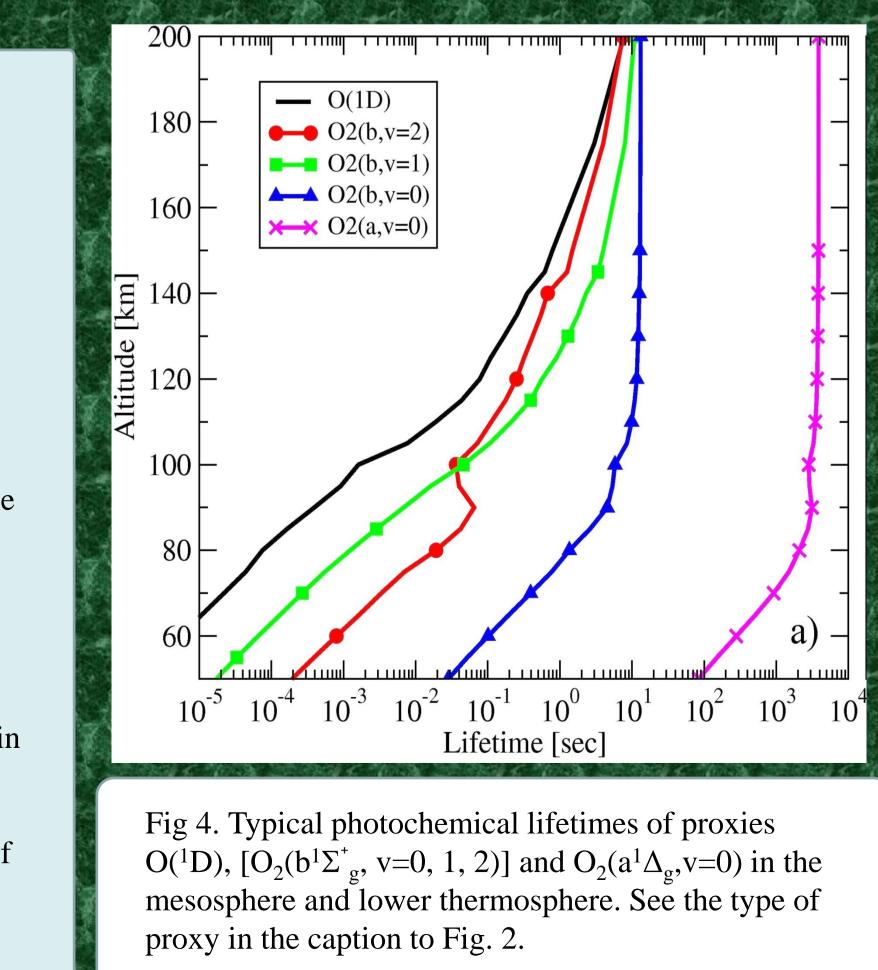
The predetermined reference altitude profile of $[O_3]$ is presented by the dotted curve, and is taken from SABER L2,2010, day 172, latitude 43.0, SZA=70.5. Type of proxy: O(¹D) – black dashed line; $O_2(b^1\Sigma_g^+, v=1)$ – green dashed line with filled squares; $O_2(b^1\Sigma_g^+, v=0)$ – blue dashed line with filled triangles; $O_2(a^1\Delta_g, v=0)$ – rose dashed line with crosses.

Problems

Results of sensitivity study

The next criterion of a "good" proxy is the value of $[O_3]$ retrieval uncertainty. Above 90 km, $O_2(a^1\Delta_g, v=0)$ becomes the worst proxy among all under consideration with the uncertainty exceeding 100% (Fig. 3b). In the interval 50–98 km $O_2(b^1\Sigma_g^+, v=1)$ is the "good" proxy with the value of uncertainty less than 20% below 90 km and less than 25% up to 98 km (Fig. 3a). Therefore, $O_2(b^1\Sigma_g^+, v=1)$ is the preferable proxy at the altitudes of 50–98 km. Commonly used [O₃] retrieval proxy, O₂($a^{1}\Delta_{g}$, v=0), transition from which forms the 1.27 μ m O₂ IR Atmospheric band, has more than one hour photochemical lifetime in the MLT. On the other hand, the O(¹D) and O₂(b¹ Σ^{+}_{g} , v=0, 1) lifetime in the altitude region of 50–200 km is less than 14 sec (Fig. 4). So, the proposed $O_2(b^1\Sigma_g^+, v=0, 1)$ and $O(^1D)$ proxies can be used for tracking fast variations of the O_3 atmospheric concentrations generated by wave processes, electron precipitations, solar flux changes, and so on, when the $O_2(a^1\Delta_g, v=0)$ proxy becomes useless.

The more suitable alternatives exist!


Based on this complex analysis we concluded that the optimal proxy for $[O_3]$ retrieval is $O_2(b^1\Sigma_g^+, v=1)$ in the altitude interval 50–98 km and $O_2(b^1\Sigma_g^+, v=0)$ in the altitude interval 85–98 km. It should be noted, that lifetimes of $O_2(b^1\Sigma_g^+, v=0, t)$ 1, and 2) are not more than 14 sec in MLT, what gave the opportunity to register the short-period $[O(^{3}P)]$ and $[O_{3}]$ variations. It is important to note that above 100 km neither of the proxies under consideration can provide ozone retrieval of sufficient accuracy.

Comments to Figures 2 and 3.

In the range of 50–85 km, $O_2(a^1\Delta_g, v=0)$ is available proxy, with an uncertainty value of less than 15 - 20%. Above 90 km, $O_2(a^1\Delta_g, v=0)$ becomes the worst proxy, with uncertainty exceeding 100% (rose curve in Fig. 3). In terms of the 'worst' proxy in the mesosphere (up to 90 km), $O_2(b^1\Sigma_g^*, v=0)$, the value of retrieval uncertainty exceeds 35% at 65-80 km (blue curve in Fig. 3).

Therefore, $O_2(b^1\Sigma_g^+, v=1)$ is the preferable proxy at altitudes of 50–98 km (green curve in Fig. 3). It is important to note that, according to Fig. 2 and Fig. 3, at above 98 km neither of the proxies under consideration can provide ozone retrieval of sufficient accuracy.

Note: $O_2(a^1\Delta_{\sigma}, v=0)$ lifetime is about one hour, the lifetimes of the other proxies are less than 14 sec.