

EPARTAMENTO DE GEOLOGIA

Iniversidade Agostinho Neto

Faculdade de Ciências

CHARACTERIZATION OF TRADITIONAL RAW MATERIALS USED IN HOUSING CONSTRUCTION IN HUAMBO REGION – ANGOLA

E. Pedro¹; I. Duarte²; H. Varum³; A. Pinho²; A. Norman⁴

European Geosciences Union General Assembly 2016 Vienna | Austria | 17-22 April 2016

¹ Methodist University of Angola, Faculty of Engineering, Luanda, Angola

² University of Évora, School of Sciences and Technology, Department of Geosciences, GeoBioTec Research Centre, Évora, Portugal ³ University of Porto, Faculty of Engineering, Department of Civil Engineering, CONSTRUCT-LESE, Porto, Portugal ⁴ Higher Polytechnic Institute of Technology and Science, Luanda, Angola

1-INTRODUCTION

The sustainability of buildings associated to the use of raw earth has motivated the studies and the development of techniques and methods in the context of this type of construction. In the region of Huambo, Angola, these construction techniques are widely used, especially for low-income families who represent the majority of the population. Much of the buildings in Huambo province are built with adobe (Fig.1). Due to the climate in this region, subtropical, hot and humid, with altitudes above 1000 meters and extensive river system, these buildings are particularly vulnerable to the action of water and develop, in many situations, early degradation. The Huambo Province is located in central Angola, has an area of about 36,000 km² and approximately 2 million inhabitants (Fig. 2).

3 - METHODS

The methodology is based on field campaigns (Fig. 3) where *in situ* expeditious tests were performed in soils (smell test, bite, color, touch, brightness, sedimentation, ball, hardness, etc.) and tests on adobes blocks manufactured with traditional procedures (Fig. 4) particularly in terms of durability and erodibility (erosion test at Geelong method; evaluation test of wet / dry cycle, applying the New Zealand standards 4297:1998; 4298:1998 and 4299:1998).

6 - RESULTS

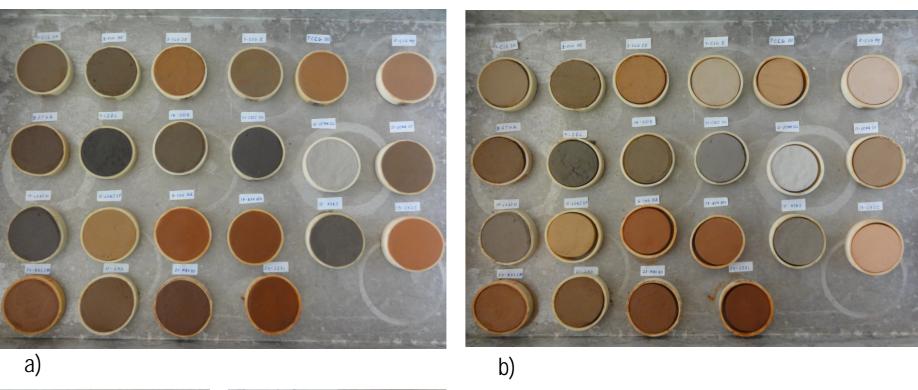


Table 3 – Shrinkage test values.

nrinkage

2,72 4.00 3,74 7,72 3,06 2,86 3,54 3,44 1.82

6,36

3.04

1,32 7,32 7.36 6,20 6,22

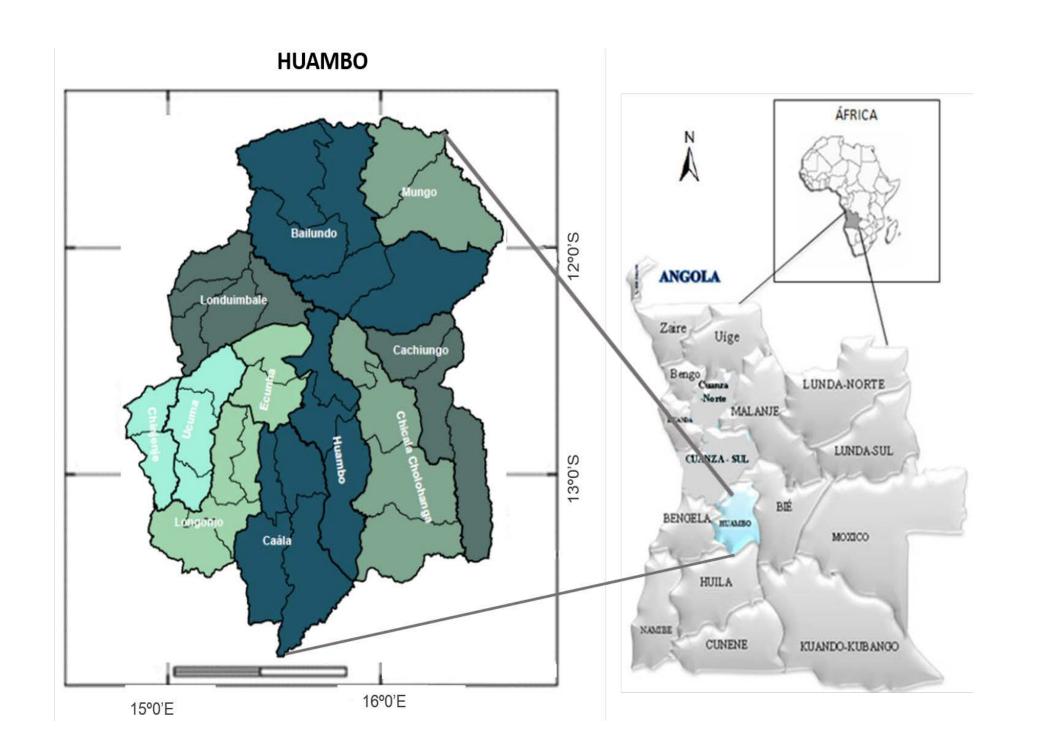
4,82 3,42 3.02

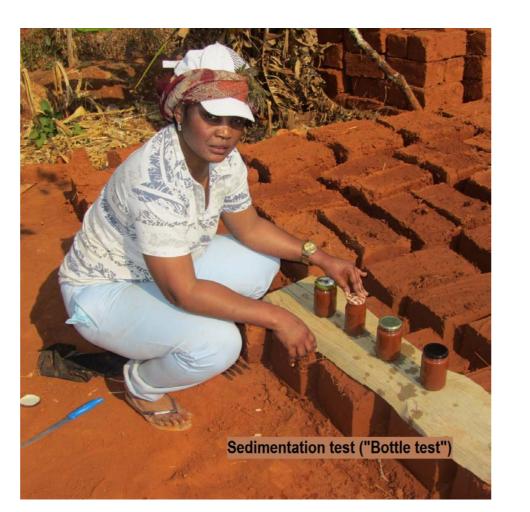
5,24

U.PORTO

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Figure 1 – Earth Construction in Huambo Region - Angola.




Figura 3 – Sampling sites on Huambo Province: (1) Napika; (2) Calenga; (3) Londuimbale; (4) Lepi; (5) Ussoque; (6) Alto Hama; (7) Catolo; (8) Ngolo; (9) Chianga; (10) Tchicala-Cholohanga; (11) Longonjo; (12) Ukuma; (13) Chinjenje; (14) Lomanda; (15) Ndondo; (16) Lunge and (17) Mungo.

4 - MATERIALS

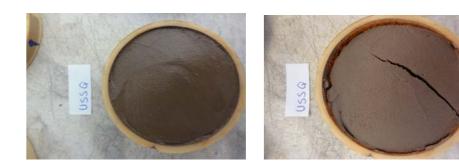


Figure 4 – Manufacture of adobes in Huambo Province - Angola.

5 - "IN SITU" TESTS IN SOILS AND ADOBES

Soil	Shrinkage	Sł
Local	[mm]	
Calenga SA	2,50	
Calenga NE	1,38	
Calenga SE	2,00	
Calenga E	1,87	
Calenga BO	3,86	
Calenga PRÇ	1,53	
Alto Hama	1,43	
Londuimbali	1,77	
Ussoque	1,72	
Chinjenje	0,91	
Ukuma SLL	3,18	
Ukuma SV	1,52	
Longonjo SS	0,66	
Longonjo SP	3,66	
Chianga	3,68	
Napika	3,10	
Ndondo	3,11	
Tchicala	2,41	
Ngolo	1,71	
Lunge	1,51	
Mungo	2,62	
Lepi	3,96	

b)

Figure 7 – Shrinkage test on rings (5 cm diameter; 1 cm height): a) moist soil; b) after 48 hours of air drying.

Table 4 – Erodibility test results (average values) of adobes using the method of Geelong.

Adobe	Groove depth	Depth of water [cm]		
Local	[mm]			
Napika	0,20	1,30		
Calenga	1,20	4,00		
Londuimbali	4,17	2,67		
Lepi	2,75	1,20		
Ussoque	3,50	3,95		
Alto Hama	4,80	4,80		
Catolo	3,00	3,50		
Ngolo	8,92	8,83		
Chianga	2,00	2,50		
Tchicala	6,67	15,00		
Longonjo	5,00	2,40		
Ukuma	3,25	12,23		
Chinjenje	2,67	2,87		
Lomanda	2,00	2,50		
Ndondo	0,50	1,00		
Lunge	5,29	4,40		
Mungo	4,00	4,00		

Figure 2 – Study area in Province of Huambo, Central Plateau of Angola.

2 - OBJECTIVES

This work aims to evaluate, by conducting *in-situ* tests, physical and mechanical properties of soils and adobe blocks typically used in the construction of those buildings.

ACKNOWLEDGEMENTS

To FCT for funding the research grant with reference SFRH/BSAB/113791/2015 and the Project with reference:

Figure 6 – Adobe blocks.

Figure 5 – Sedimentation test.

Table 1 – Average percentage of the sand, silt and clay particles, resultant of sedimentation test by the "bottle test" in the soils of some localities of Huambo Province - Angola.

Particles (%)	Napik _a	Calenga	Londuimbal _e	Lepi	Ussoque	Alto Hama	Catolo	Ngolo	Chianga	Tchicala	^{Longonjo}	Ukuma	Chinjenje	Lomanda	Ndondo	Lunge	Mungo
Sand	18,6	20,3	19,7	25,3	25,6	23,3	9,4	15,3	16,4	23,9	21,1	29,4	18,3	25,0	18,6	16,1	20,8
Silt	22,1	3,2	5,4	1,4	5,4	5,0	6,1	5,0	12,2	5,3	4,7	28,9	8,3	4,7	10,0	4,2	2,5
Clay	59,3	76,5	55,6	73,3	69,1	71,7	84,4	79,7	71,4	70,8	74,2	41,7	73,3	70,3	71,4	79,7	76,7

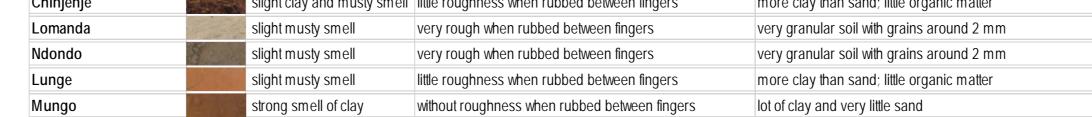
Table 2 – Characteristics observed *in situ* in each type of soil used in the manufacture of adobes.

Locality	Color	Smell	Touch	Remarks
Napika	1 5 apr	clay smell	little roughness when rubbed between fingers	more clay and less sand
Calenga	10.20	clay smell	some roughness when rubbed between fingers	lot of clay; small amount of sand
Londuimbale	「東山のい	musty smell	little roughness when rubbed between fingers	lot of clay; organic matter
Lepi	ANG PE	strong smell of clay	without roughness when rubbed between fingers	lot of clay; small amount of sand; shrinkage cracks
Ussoque		clay and musty smell	little roughness when rubbed between fingers	lot of clay; sand; organic matter
Alto Hama	Sec. 1	clay/musty smell	little roughness when rubbed between fingers	lot of clay; sand; organic matter
Catolo		little odour	with roughness	very granular soil (grains around 1 mm) with little clay
Ngolo		do not smell musty	little roughness when rubbed between fingers	lot of clay; very little amount of sand
Chianga	1 45 10	slight musty smell	little roughness when rubbed between fingers	granular soil with grains around 2 mm
Tchicala	A COMPANY	clay smell	very rough when rubbed between fingers	very granular soil with grains around 2 mm
Longonjo		slight clay and musty smell	little roughness when rubbed between fingers	more clay than sand; little organic matter
Ukuma		clay smell	with roughness	clay and sand
Chinjenje		slight clay and musty smell	little roughness when rubbed between fingers	more clay than sand; little organic matter

7- CONCLUSIONS

□ The majority of materials are clayed soils with sand and varying amounts of organic matter (Tables 1 and 2).

□ The tested soils showed significant shrinkage values, mostly above 3% (Table 3).


□ According to the test results Geelong (Table 4), the tested adobes have acceptable characteristics (less than 15 mm groove depth) for earth construction, in accordance with New Zealand Standard NZS 4298 (1998).

□ These results will contribute to the characterization of the geomaterials and methods used in construction with earth in Huambo Province, contributing to the improvement of these sustainable solutions, with a strong presence in this region. The results of this study will also contribute to the proposal of constructive solutions with improved performance characteristics, comfort, safety and durability.

CONTACTS

Email: <u>iduarte@uevora.pt</u>; <u>elsapedr@gmail.com</u>

UID/GEO/04025/2013

