Geodetic slip rate estimates for the Alhama de Murcia and Carboneras faults in the SE Betics, Spain

> Giorgi Khazaradze Anna Echeverria Eulalia Masana

RISKNAT Group, Departament de Geodinàmica i Geofísica, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain

Paper: EGU2016-9734

Session: G3.5/GD5.9/SM6.4, Monitoring and modelling of geodynamics and crustal deformation: progress during 35 years of the WEGENER initiative

Presentation time: Friday, 22nd of April, 09:00

European Geosciences Union General Assembly 2016 Vienna | Austria | 17-22 April 2016

Alpine orogenic belts in the western Mediterranean

Khazaradze et al.

EGU2016-9734

Africa-Eurasia convergence.

Africa-Eurasia convergence.

Slow deforming area

Two type of faults: ~NE-SW strike-slip ~NW-SE normal

EBSZ (Eastern Betic Shear Zone): left-lateral faults

Active faults from QAFI database (García-Mayordomo et al., 2012) and Gràcia et al. (2012) BSF: Bajo-Segura fault; CaF: Carrascoy fault; AMF: Alhama de Murcia fault; PF: Palomares fault; CFZ: Carboneras fault zone.

4°

Instrumental Seismicity

-10°

Diffuse plate boundary

 (\mathbf{i})

BY

 \odot

UNIVERSITAT DE BARCELONA

2° 0° –6' -2° 44° 42° 40° 38° 5.6 mm/yr γ 7< M <8 36° \breve{O} 6< M <7 • 5< M <6 4< M <5 . 3< M <4

Khazaradze et al. EGU2016-9734

Instrumental seismicity from IGN catalog (1910-2016).

34°

Focal Mechanisms

Mixed type faulting

 (\mathbf{i})

BY

 \odot

UNIVERSITAT DE

BARCELONA

Focal mechanisms from Stich et al. (2003; 2006; 2010): 1984-2008 and Martín et al (2015): 2009-2014.

BY

 \odot

Historical Seismicity

Date	Long.	Latit.	Deaths	Intensity	est. M	Location
1048	0° 55' W	38° 5' N		VIII		Orihuela (Alicante)
1169	4° 0' W	38° 0' N		VIII-IX		Andujar (Jaén)
24-8-1356	10° 0' W	36° 30' N		VIII		SW. Cabo San Vicente
2-3-1373	0° 45' E	42° 30 'N		VIII-IX		CondadodeRibagorça (Huesca-Lleida)
18-12-1396	0° 13' W	39° 5' N		VIII-IX	6.5	Tavernes de la Valldigna (Valencia)
15-5-1427	2° 30' E	42° 12' N		VIII-IX		Olot (Girona)
2-2-1428	2º 10' E	42° 21' N	800	IX-X		Queralbs (Girona)
24-4-1431	3° 38' W	37° 8' N		VIII-IX	6.7	Sur de Granada
26-1-1494	4° 20' W	36° 35' N		VIII		Sur de Málaga
5-4-1504	5° 28' W	37° 23' N	32	VIII-IX	6.8	Carmona (Sevilla)
9-11-1518	1° 52'W	37° 14' N	165	VIII-IX		Vera (Almeria)
22-9-1522	2° 40' W	36° 58' N	1000	VIII-IX	6.5	Mar de Alborán
30-9-1531	2° 44' W	37° 32' N	400	VIII-IX		Baza (Granada)
19-6-1644	0° 25' W	38° 48' N	22	VIII		Muro de Alcoy (Alicante)
31-12-1658	2° 28' W	36° 50' N		VIII-IX		Almería
28-08-1674	1°42'W	37°40'N	30	VIII		Lorca
9-10-1680	4° 36' W	36° 48' N	70	VIII-IX	6.8	Alhaurín el Grande (Málaga)
23-3-1748	0° 38' W	39° 2' N	38	IX	6.2	Estubeny (Valencia)
1-11-1755	10° 0' W	36° 30' N	15000	Х	8.5	SW. Cabo San Vicente
13-11804	3° 35' W	36° 5' N	2	VII-VIII	6.7	Mar de Alborán
25-8-1804	2° 50' W	36° 46' N	407	VIII-IX	6.4	Dalias (Almaria)
27-10-1806	3° 44' W	37° 14' N	13	VIII	5.3	Pinos Puente (Granada)
21-3-1829	0° 41' W	38° 5' N	389	IX-X	6.6	Torrevieja (Alicante)
25-12-1884	3° 59' W	37° 0' N	839	IX-X	6.5	Arenas del Rey (Granada)
29/03/54	3° 36' W	37° 0' N		V	7.0	Durcal (Granada)
19/04/56	3° 41' W	37º 11' N	11	VIII	4.7	Albolote (Granada)
28/02/69	10° 49' W	35° 59' N	19	VII	7.3	SW. Cabo San Vicente

Khazaradze et al.

EGU2016-9734

UNIVERSITAT DE BARCELONA

 \odot

 (\mathbf{i})

BY

Historical seismicity from IGN (see Martínez Solares & Mezcua, 2002; Mezcua et al.,

²⁰¹³⁾

Campaign and Continuous Observation

SGPS

Survey mode or campaign mode 16 stations; Duration: 15 yrs

CuaTeNeo Network (15) ROA (1)

Campaigns: 1997, 2002, 2006, 2009 and 2011.

Khazaradze et al. EGU2016-9734

CGPS

Continuous mode

25 stations; Min Duration: 4.5 yrs

GNSS networks:

ERGNSS RAP Regam Meristemum ERVA TopoIberia Event

UNIVERSITAT DE BARCELONA

SGPS Observations: CuaTeNeo

<u>Cua</u>ntificación de la <u>Te</u>ctónica actual y <u>Neo</u>tectónica

AMF, PF, CF

Monument types: Concrete (11) Nail type (4); CART from ROA

Observed in 1997, 2002, 2006, 2009 and 2011*

GPS Data

Continuous GPS Observation

Khazaradze et al.

EGU2016-9734

CuaTeNeo Velocity Field

~1-2 mm/yr to NW

 (\mathbf{i})

BY

(cc)

Related to Africa/Eurasia convergence

UNIVERSITAT DE

BARCELONA

Diminution of velocity (<1 mm/yr) west of AMF

Westerly component in HUEB-ALME

SGPS velocities in western Europe reference frame with 95% confidence error ellipses

Khazaradze et al. EGU2016-9734

See: Echeverria et al., 2013, Tectonophysics

CuaTeNeo: Strain Rate Field

Alhama de Murcia fault: Lorca 2011 earthquake

Alhama de Murcia fault: Lorca 2011 earthquake

Khazaradze et al. EGU2016-9734

UNIVERSITAT DE

BARCELONA

 (\mathbf{i})

BY

(cc)

Paleoseismology

Horizontal slip rate of **0.06-0.53 mm/yr**

(Masana et al., 2004; Martínez-Díaz et al., 2012; Ortuño et al., 2012)

New 3D-trenches study: preliminary slip rate > 0.6 ± 0.1 mm/yr

(Ferrater et al., 2015)

GPS

Horizontal slip rate of **1.5±0.3 mm/yr**

The involvement of the Palomares fault?

GPS slip rate is an upper bound of the overall slip rate

Khazaradze et al. EGU2016-9734 Results

Alhama de Murcia fault: Lorca 2011 earthquake

11/05/2011 Mw 5.2, Lorca AMF related

Alhama de Murcia fault: Lorca 2011 earthquake

GPS stations:

UNIVERSITAT DE

BARCELONA

- TERC (CuaTeNeo)
- LRCA (Meristemum)

 (\mathbf{i})

 \odot

LORC (REGAM)

Coseismic displacements:

- TERC: 0 mm
- LRCA: 6±0.6 mm to N
 0.7±0.5 mm to the
 W

Similar results were obtained by *González* et al., 2012.

Khazaradze et al.

EGU2016-9734

Lorca 2011 EQ: Dislocation Model

Elastic dislocation model (Okada 1985)

 (\mathbf{i})

BY

(cc)

Co-seimic displacements:

LRCA	Observed	Modeled
S-N	6±0.6 mm	6.4 mm
W-E	-0.7±0.5 mm	-0.2 mm

No displacement from the model at TERC

Khazaradze et al. EGU2016-9734

Focal mechanism and seismic sequence from López-Comino et al. (2012). Model parameters from Martínez-Díaz et al. (2012); See Frontera et al (2012, *Solid Earth* for more details.

SGPS and CGPS Combined Velocity Field

EGU2016-9734

Carboneras Fault Zone (CFZ)

Left-lateral fault

NCFZ and SCFZ (Moreno, 2011; Moreno et al., 2015)

GATA CGPS Installed in 2008 (UB) Short Drill Braced monument 0.2 km from RELL campaign station

Europe Fixed reference frame

GATA Fixed reference frame

CFZ: left-lateral AFZ: right-lateral

Carboneras Fault Zone (CFZ) Alpujarras Fault Zone (AFZ)

BY

CFZ Perpendicular Profile

BY

Rigid Block Model

Khazaradze et al. EGU2016-9734 The domain boundaries are the most active faults Carboneras fault relays AMF (how and where?)

BY

Alternative Model

Earth Planet. Sci. Lett.

Conclusions

- GPS confirms ongoing tectonic activity in the SE Betics.
- NW oriented velocities ranging from 0.5 to 3 mm/yr
- The highest deformations are found in the region between AMF and PF
 - PF is slipping very slowly or is currently inactive
 - Geodetic slip rate for the AMF < 1.5 ± 0.3 mm/yr
- Geodetic left-lateral strike-slip motion of 1.3 ± 0.2 mm/yr of CFZ.
- Geodetic strain rates higher than seismic strain rates for the southern area.
 - Aseismic processes in the area or underestimation of the seismic strain rates

UNIVERSITAT DE

BARCELONA

 (\mathbf{i})

BY

 \bigcirc

i MUCHAS GRACIAS ! Thanks ! Спасибо! Teşekkür ederim! მადლიბთ!

