Geophysical Research Abstracts
Vol. 19, EGU2017-10205-2, 2017 EG U
EGU General Assembly 2017

© Author(s) 2017. CC Attribution 3.0 License.

Ibmdbpy-spatial : An Open-source implementation of in-database
geospatial analytics in Python

Avipsa Roy (1,2), Edouard Fouché (2), Rafael Rodriguez Morales (2), and Gregor Moehler (2)

(1) Institute for Geoinformatics, University of Minster, Miinster, Germany (a_roy0O1 @uni-muenster.de), (2) IBM Research
and Development GmbH, Boblingen, Germany

As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infras-
tructure has become more powerful, the need for adoption of in-database analytic technology within geosciences
has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables
much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends
and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and
shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with
a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to
fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to
the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to
in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on
IBM’s cloud platform called Bluemix.

Working in-database reduces the network overload, as the complete data need not be replicated into the user’s
local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance.
Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the under-
lying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-
enhancing features, such as columnar storage and parallel processing. The package is currently supported on
Python versions from 2.7 up to 3.4.

The basic architecture of the package consists of three main components - 1) a connection to the dashDB repre-
sented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish
the database connection via ODBC or JDBC respectively, 2) an instance to represent the spatial data stored in the
database as a dataframe in Python, called the IdaGeoDataFrame, with a specific geometry attribute which recog-
nises a planar geometry column in dashDB and 3) Python wrappers for spatial functions like within, distance, area,
buffer and more which dashDB currently supports to make the querying process from Python much simpler for the
users. The spatial functions translate well-known geopandas-like syntax into SQL queries utilising the database
connection to perform spatial operations in-database and can operate on single geometries as well two different
geometries from different IdaGeoDataFrames. The in-database queries strictly follow the standards of OpenGIS
Implementation Specification for Geographic information - Simple feature access for SQL.

The results of the operations obtained can thereby be accessed dynamically via interactive Jupyter notebooks from
any system which supports Python, without any additional dependencies and can also be combined with other
open source libraries such as matplotlib and folium in-built within Jupyter notebooks for visualization purposes.
We built a use case to analyse crime hotspots in New York city to validate our implementation and visualized the
results as a choropleth map for each borough.



