

Development of a High Precision Oxygen, Carbon Dioxide, and Water Monitor for Fast Plume and Eddy Flux Measurements

Mark Zahniser, David Nelson, Rob Roscioli, Scott Herndon, Dylan Jervis, Barry McManus, and Tara Yacovitch Aerodyne Research, Inc., Billerica, United States (ddn@aerodyne.com)

A central concept of the carbon cycle is the inverted relationship between CO_2 and O_2 , which provides detailed information about CO_2 sources and sinks. For example, Keeling was able to use very precise O_2 and CO_2 measurements to understand oceanic vs terrestrial carbon sinks. It has been a long-standing challenge to measure both species with enough precision and response time to understand the CO_2/O_2 exchange on a local scale. Such a capability would allow for detailed measurements of ecosystem exchange, fossil fuel burning processes, and emissions from carbon sequestration sites.

Here we report on recent advances using near-infrared direct absorption spectroscopy to measure CO₂, O₂, and H₂O on timescales of 0.1 to 1 second and at high precision, for eddy flux quantification of ecosystem exchange. O₂ is quantified using the A-band electronic absorption at 763 nm, yielding a 1 s precision of 6 ppm and 100 s precision of 1 ppm (30 and 5 per meg fractional precision, respectively). CO₂ and H₂O are quantified using overtone transitions at 2 micron, providing 1 s precisions of <0.02 ppm and <0.2 ppm, respectively. The monitor uses a compact multipass cell with a time response is <0.3 s at 3 SLPM flow rate. We present long-term O₂ and CO₂ rooftop measurements, revealing multiple combustion sources contributing to the local CO₂ enhancement.