Geophysical Research Abstracts Vol. 19, EGU2017-10336-1, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Diffuse CO₂ degassing monitoring of Cerro Negro volcano, Nicaragua

Pedro A. Hernández (1,2,3), Mar Alonso (1), Martha Ibarra (4), Wesly Rodríguez (4), Gladys V. Melián (1,2,3), Armando Saballos (4), José Barrancos (1,2), Nemesio M. Pérez (1,2,3), Julio Álvarez (4), and William Martínez (4)

(1) Instituto Volcanólogico de Canarias (INVOLCAN), 38400 Puerto de La Cruz, Tenerife, Canary Islands, Spain, (2) Instituto Tecnológico y de Energías Renovables (ITER), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain, (3) Agencia Insular de la Energía de Tenerife (AIET), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain, (4) Instituto Nicaragüense de Estudios Territoriales (INETER), 2110 Managua, Nicaragua

We report the results of fourteen soil CO_2 efflux surveys by the closed accumulation chamber method at Cerro Negro volcano, Nicaragua. The surveys were undertaken from 1999 to 2016 to constrain the diffuse CO₂ emission from this volcano and to evaluate the spatial and temporal variations of CO_2 degassing rate in relation to the eruptive cycle. Cerro Negro is an active basaltic volcano belonging to the active Central American Volcanic Arc which includes a 1,100 Km long chain of 41 active volcanoes from Guatemala to Panama. Cerro Negro first erupted in 1850 and has experienced 21 eruptive eruptions with inter eruptive average periods between 7 and 9 years. Since the last eruption occurred on 5 August 1999, with erupted lava flows and ash clouds together with gas emissions, a collaborative research program between INETER and ITER/INVOLCAN has been established for monitoring diffuse CO₂ emissions from this volcano. The first survey carried out at Cerro Negro was in December 1999, just 3 months after the 1999 eruption, with a total diffuse CO $_2$ emission output estimated on 1,869 \pm 197 td⁻¹. The second survey carried out in March 2003, three years after the eruption, yielded a value of 432 ± 54 td⁻¹. Both values that can be considered within the post-eruptive phase. The last survey performed at Cerro Negro was in November 2016, with an estimated diffuse CO₂ emission of 63 ± 14 t·d⁻¹ and soil CO₂ efflux values ranging from non-detectable (~0.5 g m⁻² d⁻¹) up to 7264 g m⁻² d⁻¹. The long-term record of diffuse CO₂ emissions at Cerro Negro shows small temporal variations in CO₂ emissions with a peak in 2004 ($256 \pm 26 \text{ td}^{-1}$) followed by a peak in seismicity. Except this value, the rest of estimated values can be considered within the inter-eruptive phase, period during which a decreasing trend on the total diffuse CO2 output has been observed, with estimates between 10 and 83 t·d⁻¹. Regarding to the spatial distribution of diffuse CO₂ values, most of relatively high CO₂ efflux values were measured along the 1995 and 1999 craters together with higher soil H₂S efflux and soil temperatures, and always close to the fumarolic areas, suggesting a structural control of the degassing process. The observed relationship between the long-term record of diffuse CO₂ emissions and volcanic-seismic activity indicates that monitoring CO₂ emission is an important geochemical tool for the volcanic surveillance at Cerro Negro.