Geophysical Research Abstracts Vol. 19, EGU2017-12226, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Chemotaxis and flow disorder shape microbial dispersion in porous media

Pietro De Anna (1), Yutaka Yawata (2), Roman Stocker (2), and Ruben Juanes (3)(1) Institute of Earth Sciences - UNIL, (2) ETH Zürich, (3) Civil and Environmental Engineering - MIT

Bacteria drive a plethora of natural processes in the subsurface, consuming organic matter and catalysing chemical reactions that are key to global elemental cycles. These macro-scale consequences result from the collective action of individual bacteria at the micro-scale, which are modulated by the highly heterogeneous subsurface environment, dominated by flow disorder and strong chemical gradients. Yet, despite the generally recognized importance of these microscale processes, microbe-host medium interaction at the pore scale remain poorly characterized and understood. Here, we introduce a microfluidic model system to directly image and quantify the role of cell motility on bacterial dispersion and residence time in confined, porous, media. Using the soil-dwelling bacterium Bacillus subtilis and the common amino acid serine as a resource, we observe that chemotaxis in highly disordered and confined physico-chemical environment affords bacteria an increase in their ability to persistently occupy the host medium. Our findings illustrate that the interplay between bacterial behaviour and pore-scale disorder in fluid velocity and nutrient concentration directly impacts the residence time, transport and bio-geo-chemical transformation rates of biota in the subsurface, and thus likely the processes they mediate.