Geophysical Research Abstracts Vol. 19, EGU2017-12291, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Natural CO_2 analogues: what studying their chemical and mechanical behaviour can teach us for long-term CO_2 storage

Suzanne Hangx

Utrecht University, Utrecht, Netherlands (s.j.t.hangx@uu.nl)

To reduce global CO_2 emissions, CO_2 Capture and Storage (CCS) is considered to be a potential technology that can play a significant role in achieving this goal. However, questions regarding the long-term safety of subsurface CO_2 storage means that it is met with opposition.

To ensure safe storage, beyond the timescale of 10~000 years as required by many regulators, it is important to be able to predict the effect CO_2 /brine/rock interactions may have on long-term storage integrity of CCS sites. Understanding their impact on the mechanical behaviour of the reservoir-caprock system has been a strong focus for many years. However, the slow reaction rates of many minerals with CO_2 and brine means that laboratory studies can mainly address the chemo-mechanical behaviour on timescales of several weeks to months.

Natural CO_2 analogues offer a unique way to study the long-term chemo-mechanical behaviour of storage systems, as here CO_2 has been present for over thousands of years. This presentation will give an overview of the current status of research in this area.