Geophysical Research Abstracts Vol. 19, EGU2017-12412, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Tree CH₄ fluxes in forestry drained peatland in southern Finland

Iikka Haikarainen, Anuliina Putkinen, Petteri Pyykkö, Elisa Halmeenmäki, and Mari Pihlatie Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Helsinki, Finland (iikka.haikarainen@helsinki.fi)

Methane (CH₄) is among the most important greenhouse gases and its atmospheric concentration is increasing. Boreal forests are commonly considered a net sink of atmospheric CH₄ due to CH₄ consuming bacteria in aerated soil layers. Recent studies have, however, demonstrated that trees are capable of emitting CH₄ from their stems and shoots by transporting anaerobically produced CH₄ from deeper soil layers to the atmosphere. Furthermore, trees may act as independent sources of CH₄.

We have measured tree stem CH₄ exchange of boreal tree species at Lettosuo, a nutrient rich peatland forest in Tammela, southern Finland (60°38' N, 23°57' E), using the static chamber technique. Three species, downy birch (*Betula pubescens*), Norway spruce (*Picea abies*) and Scots pine (*Pinus sylvestris*), were selected under investigation as they represent common boreal tree species. Fluxes of CH₄ were measured during 7.6.2016 – 17.10.2016 from in total 25 sample trees growing on two different plots: a treatment plot where all the pines were removed to raise the water table level (WTL) and a control plot. Three birches from the treatment plot were selected to measure CH₄ flux variation within vertical profile of the trees. Characterization of microbial communities, quantification of methanogenic and methanotrophic functional genes, and measurements of potential CH₄ production and consumption from peat profile and forest floor moss samples were also carried out to obtain insight to the CH₄ flux dynamics at the studied sites.

The pine removal treatment did not markedly change the average WTL, but it made the WTL more variable with frequently 10–15 cm closer to soil surface compared to the WTL on the control plot. We found small and variable CH₄ emissions from the stems of trees on both of the plots, while occasional consumption of CH₄ was also present. Generally the CH₄ emissions were higher and more dominant at the treatment plot compared to the control plot, and the fluxes were significantly different between the plots (p < 0.001). The CH₄ emission rates from the birches at the treatment plot decreased exponentially in the stem vertical profile. Clear seasonal flux dynamics or significant differences in the CH₄ flux between the species were not found at either of the plots. Microbial experiments showed that anaerobic CH₄ production, CH₄ oxidation potential (under 1000 ppm CH₄) and the amount of methanogens were higher in the peat of the treatment site.

The difference in the CH_4 flux rates between the plots indicates that the WTL is a major regulator of tree CH_4 emissions on forestry drained peatlands, supporting our hypothesis that the stem emitted CH_4 originates from anaerobic soil conditions. This hypothesis is further supported by the results of the microbial analysis and by the observation that more CH_4 is emitting from the lower parts of the stems compared to the upper stem.