Geophysical Research Abstracts Vol. 19, EGU2017-12901, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Revisiting the factors which control the angle of shear bands in geodynamic numerical models of brittle deformation

Cedric Thieulot

Utrecht University, Dept. of Earth Sciences, Utrecht, Netherlands (c.thieulot@uu.nl)

In this work I present Finite Element numerical simulations of brittle deformation in two-dimensional Cartesian systems subjected to compressional or extensional kinematical boundary conditions with a basal velocity discontinuity. The rheology is visco-plastic and is characterised by a cohesion and an angle of internal friction (Drucker-Prager type).

I will explore the influence of the following factors on the recovered shear band angles when the angle of internal friction is varied: a) element type (quadrilateral vs triangle), b) element order, c) continuous vs discontinous pressure, d) visco-plasticity model implementation, e) the nonlinear tolerance value, f) the use of markers, g) Picard vs Newton-Raphson, h) velocity discontinuity nature.

I will present these results in the light of already published literature (e.g. Lemiale et al, PEPI 171, 2008; Kaus, Tectonophysics 484, 2010).