Geophysical Research Abstracts Vol. 19, EGU2017-14128, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Extreme future central European droughts in a high-resolution global climate model

Rein Haarsma, Eveline C. van der Linden, Frank Selten, and Gerard van der Schrier Royal Netherlands Meteorological Institute, De Bilt, The Netherlands (linden@knmi.nl)

Future climate change is projected to induce strong central European summer drying. Using high resolution (\sim 25 km) climate simulations we have investigated the occurrence of droughts at the end of the 21th century under a RCP4.5 emission scenario. Dynamic mechanisms and local feedbacks are responsible for a strong increase of extreme droughts in central Europe. This increase is much larger than for the standard (\sim 150 km) resolution of the same model. The dynamical cause is a stronger anomalous high over the UK in late spring that induces enhanced subsidence with reduced precipitation. This reduces the soil moisture content, thereby pre-conditioning the occurrence of local feedbacks that enhance the drought conditions. These local feedbacks are a reduction of the evaporative fraction that induces an enhancement of surface temperature, increase of dry days and solar radiation. The pre-conditioning and enhancement by local feedbacks induce a clustering of extreme droughts and is a source of predictability. The extreme character of the droughts affects the ground water storage and the run-off in the following year. An additional effect of the increase of drought induced summer temperatures is that a larger fraction of the precipitation falls as heavy rain.