Geophysical Research Abstracts Vol. 19, EGU2017-14321, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Iodide Chemical Ionization Mass Spectrometry for Trace gas Measurement in Different Environments

Philipp Eger, Gavin J. Phillips, and John N. Crowley Max Planck Institute for Chemistry, Mainz, Germany

Chemical Ionization Mass Spectrometry (CIMS) is a versatile and specific technique to simultaneously measure various atmospheric trace gases with good temporal resolution and detection limits in the ppt range (Huey et al., 1995). Our Iodide-CIMS with polonium ionizer and quadrupole mass filter has been used in the past to make measurements of halogenated and organic nitrates and peracetic acid (Phillips et al., 2012; Phillips et al., 2013). Here we present a modified I-CIMS instrument with an electrical discharge ion source that is able to detect a wider variety of gas-phase molecules including peroxyacyl nitrates (PANs), peracetic acid (PAA), ClNO₂, HCl, SO₂ and organic acids. We show the results of three different field campaigns that took place in maritime, mixed urban/rural and forested environment and outline the instrumental design and the ion chemistry involved. In aged marine air masses (CYPHEX 2014) we measured elevated levels of HCl, ClNO₂ and SO₂, whereas in the boreal forest (IBAIRN 2016) organic acids resulting from biogenic VOC oxidation were predominant. In mixed urban/rural sites (NOTOMO 2015) both low- and high-NO_x conditions were encountered and SO₂, PAN, PAA, HCl and ClNO₂ were observed.