Geophysical Research Abstracts Vol. 19, EGU2017-14489, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Empirical algorithms to predict aragonite saturation state

Daniela Turk and Michael Dowd

Dalhousie University, Dept. of Oceanography, Halifax, Canada (Daniela.Turk@dal.ca)

Novel sensor packages deployed on autonomous platforms (Profiling Floats, Gliders, Moorings, SeaCycler) and biogeochemical models have a potential to increase the coverage of a key water chemistry variable, aragonite saturation state (Ω Ar) in time and space, in particular in the under sampled regions of global ocean. However, these do not provide the set of inorganic carbon measurements commonly used to derive Ω Ar. There is therefore a need to develop regional predictive models to determine Ω Ar from measurements of commonly observed or/and non carbonate oceanic variables. Here, we investigate predictive skill of several commonly observed oceanographic variables (temperature, salinity, oxygen, nitrate, phosphate and silicate) in determining Ω Ar using climatology and shipboard data. This will allow us to assess potential for autonomous sensors and biogeochemical models to monitor Ω Ar regionally and globally. We apply the regression models to several time series data sets and discuss regional differences and their implications for global estimates of Ω Ar.