

Impact of fluid injection velocity on CO₂ saturation and pore pressure in porous sandstone

Keigo Kitamura, Hiroyuki Honda, Shinnosuke Takaki, Mitsunori Imasato, and Yasuhiro Mitani
Kyushu University, Fukuoka, Japan (kitamura@i2cner.kyushu-u.ac.jp)

The elucidation of CO₂ behavior in sandstone is an essential issue to understand the fate of injecting CO₂ in reservoirs. Injected CO₂ invades pore spaces and replaces with resident brine and forms complex two-phase flow with brine. It is considered that this complex CO₂ flow arises CO₂ saturation (S_{CO_2}) and pore fluid pressure (P_p) and makes various types of CO₂ distribution pattern in pore space. The estimation of S_{CO_2} in the reservoir is one of important task in CCS projects. Fluid pressure (P_p) is also important to estimate the integrity of CO₂ reservoir and overlying cap rocks. Generally, elastic waves are used to monitor the changes of S_{CO_2} . Previous experimental and theoretical studies indicated that S_{CO_2} and P_p are controlled by the fluid velocity (flow rate) of invaded phase. In this study, we conducted the CO₂ injection test for Berea sandstone ($\phi=18.1\%$) under deep CO₂ reservoir conditions (confining pressure: 20MPa; temperature: 40 °C). We try to estimate the changes of S_{CO_2} and P_p with changing CO₂ injection rate (FR) from 10 to 5000 μ l/min for Berea sandstone. P-wave velocities (V_p) are also measured during CO₂ injection test and used to investigate the relationships between S_{CO_2} and these geophysical parameters. We set three V_p -measurement channels (ch.1, ch2 and ch.3 from the bottom) monitor the CO₂ behavior. The result shows step-wise S_{CO_2} changes with increasing FR from 9 to 25 % in low-FR condition (10-500 μ l/min). V_p also shows step wise change from ch1 to ch.3. The lowermost channel (ch.1) indicates that V_p -reduction stops around 4% at 10 μ m/min condition. However, ch.3 changes slightly from 4% at 10 μ l/min to 5% at 100 μ l/min. On the other hand, differential P_p (ΔP) dose not shows obvious changes from 10kPa to 30kPa. Over 1000 μ l/min, S_{CO_2} increases from 35 to 47 %. V_p of all channels show slight reductions and V_p -reductions reach constant values as 8%, 6% and 8%, respectively at 5000 μ l/min. On the other hand, ΔP shows rapid increasing from 50kPa to 500 kPa. It suggests a drastic change of CO₂ behavior with injection rate. CO₂ flows gently and enlarges S_{CO_2} up to 25 % under low FR conditions without arisen ΔP (<500 μ l/min). Over 1000 μ l/min, CO₂-flow causes rapid increment of S_{CO_2} and ΔP . From these experimental results clearly indicate that S_{CO_2} and ΔP are strongly controlled by CO₂ injection rate.