Geophysical Research Abstracts Vol. 19, EGU2017-15722, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Biomass burning influences on ozone during the SAMBBA aircraft campaign.

Tim Keslake (1,2), Martyn Chiperfield (1,2), Graham Mann (1,3), Johannes Flemming (), Will Morgan (5), Eoghan Darbyshire (5), Sam Remy (6), Sandip Dhomse (1), Richard Pope (1,2), and Carly Reddington (1) (1) Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom (eetdk@leeds.ac.uk), (2) National Centre for Earth Observation, University of Leicester, Leicester, United Kingdom, (3) NCAS-Climate, National Centre for Atmospheric Science, Leeds, United Kingdom, (4) Research Department, European Centre for Medium Range Weather Forecasting, Reading, United Kingdom, (5) Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom, (6) Laboratoire de Météorologie Dynamique, Centre national de la recherche scientifique, Paris, France

Ozone (O_3) is an air pollutant and a greenhouse gas. It is detrimental to human and plant health, damaging plant stomata and therefore limiting photosynthesis. O_3 is both formed and lost via the interconversion between nitric oxide (NO) and nitrogen dioxide (NO₂); the relative amount of O_3 produced depends on the amount of O_3 (NO + NO₂) and volatile organic compounds (VOCs), which indirectly compete with O_3 to oxidise NO back into NO₂, leading to more O_3 . The Amazon region has some of the lowest background O_3 levels on the planet (\sim 20 ppb) and is a O_3 -limited environment for ozone production. During the tropical dry season emissions of O_3 and O_3 from both tropical and savannah fires lead to a large increase in O_3 mixing ratios over the Amazon.

With a predicted increase in non-agricultural fire activities, due to a changing climate it is important to understand how much O_3 is being formed in the Amazon and the sensitivity of this to fire and other emissions. The amount of O_3 is potentially of additional importance as the Amazon forest is the largest single land carbon sink on the planet, with an estimated net annual sink of 2.4 pG C yr⁻¹, which could be limited by O_3 plant damage. Despite this, detailed observation of O_3 and its precursors in the Amazon have been limited. However, the SAMBBA field campaign (September- October 2012) provides an opportunity to observe in-situ O_3 formation.

The ECMWF C-IFS (Composition Integrated Forecast System) developed under MACC and continued under CAMS, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, \sim 80km). In this study, we present results from C-IFS experiments for the SAMBBA period, with and without composition data assimilation, exploring how well the C-IFS represents biomass burning influences on O_3 in the Amazon. The aim is to test our understanding of O_3 formation and precursor emissions as well as the capability of the C-IFS for air quality forecasts.

The flight campaign showed average O_3 values of 43 ppb, over tropical vegetation in the dry season with larger values observed in the upper troposphere during the wet season (61ppb). The largest surface O_3 values were observed over the eastern savannah region (75 ppb), where NO_x emissions were most significant. Comparisons to the C-IFS show that the model persistently underestimated O_3 value compared to the in-situ observations (MFB -39%). The bias is thought to be caused by an underestimation of both fire and lightning NO_x emissions in the model. When NO_x emissions are improved by assimilation of OMI satellite NO_2 data in the Eastern region, O_3 values show a smaller overestimation compared to the observations (MFB 4%).