

Pollution of soils in urban areas in Serbia

Gordana Grujic (1), Dragan Crnkovic (2), and Artemi Cerdà (3)

(1) OASIS, S.J.V., 11000 Belgrade, the Republic of Serbia , (2) Institute for Public Health , Bulevar Despota Stefana 54-a, 11000 Belgrade, the Republic of Serbia , (3) Soil Erosion and Degradation Research Group. Department de Geografia. Universitat de Valencia. artemio.cerdà@uv.es

Soil pollution is a world-wide problems that affect rural and urban areas of all the continents (Hu et al., 2015; Mao et al., 2016; Trujillo-González et al., 2016; Elkhatib et al., 2016; Roy and McDonad, 2015; Mahmoud and Abd El-Kader, 2015; Adamcová et al., 2016). There is a need to develop a program to achieve the sustainability of the soil system as the soils offers goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016).

The program of systematic monitoring of soil pollution in Belgrade is aimed at testing the concentration of hazardous and harmful substances in soil at urban areas, interpretation of the results in accordance with current legislation, soil characteristics and geology and terrain, proposal of preventive and remedial measures in the wider territory of Belgrade. The paper gives an overview of the results of systematic monitoring of soil pollution in Belgrade in the period from 2009 to 2013.

In accordance with the objectives of the investigation during the period from 2009-2013, while having in mind the purpose and manner of land use, the program of monitoring of soil pollution in the territory of Belgrade is oriented to the following areas:

1 - Land in the zone of the sanitary protection of the Belgrade water supply system,

2- Land in zone nearby the main roads,

3 - Land within the communal areas (public areas and agricultural land in the wider vicinity of Belgrade).

On the basis of the conducted soil monitoring in the wider area of Belgrade, a large number of sites is contaminated with higher concentrations of hazardous and harmful substances that are exceeding the maximum allowed prescribed legal norms. The causes of soil contamination are both, anthropogenic and natural. Taking into account the all results, the most common deviation is referred to the increased nickel content in soil. A number of soil samples showed increase in concentrations of pollutants including Cu, Zn, Pb, Cd, As, Cr, Hg and organic pollutants. A special surveillance of soil pollution is related to the determination of the contents of hazardous and harmful substances in the soil surrounding public fountains with drinking water. The results indicated an increased content of Pb, Cd, Zn, Cu and pesticide residues that could lead to deterioration of the quality of drinking water of these springs and to endanger the health of the population that use this water. Investigation included determination of the level of radioactive elements in soil such are Cs, Sr and U.

The presence of the registered harmful and hazardous substances in the soil on the territory of Belgrade requires continued monitoring the content of these pollutants including an assessment of potential adverse effects on the human health and the environment, as well as undertaking the necessary prevention and protection measures.

Acknowledgements.

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECAR project)

References

Adamcová, D., Vaverková, M.D., Bartoň, S., Havlíček, Z., Břoušková, E. 2016. Soil contamination in landfills: A case study of a landfill in Czech Republic. *Solid Earth*, 7 (1), pp. 239-247. DOI: <http://dx.doi.org/10.5194/se-7-239-2016>

Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015,

Elkhatib, E., M. Moharem, A. Mahdy, and M. Mesalem. 2016. Sorption, Release and Forms of Mercury in Contaminated Soils Stabilized with Water Treatment Residual Nanoparticles. *Land Degradation and Development*. doi:10.1002/ldr.2559.

Hu, Y. -L, Z. -X Niu, D. -H Zeng, and C. -Y Wang. 2015. Soil Amendment Improves Tree Growth and Soil Carbon and Nitrogen Pools in Mongolian Pine Plantations on Post-Mining Land in Northeast China. *Land Degradation and Development* 26 (8): 807-812. doi:10.1002/ldr.2386.

Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, *SOIL*, 2, 111-128, doi:10.5194/soil-2-111-2016, 2016.

Keesstra, S.D., Geissen, V., van Schaik, L., Mosse, K., Piiranen, S., 2012. Soil as a filter for groundwater quality. *Current Opinions in Environmental Sustainability* 4, 507-516. doi:10.1016/j.cosust.2012.10.007

Mahmoud, E. and N. Abd El-Kader. 2015. Heavy Metal Immobilization in Contaminated Soils using Phosphogypsum and Rice Straw Compost. *Land Degradation and Development* 26 (8): 819-824. doi:10.1002/ldr.2288.

Mao, W., S. Kang, Y. Wan, Y. Sun, X. Li, and Y. Wang. 2016. Yellow River Sediment as a Soil Amendment for Amelioration of Saline Land in the Yellow River Delta. *Land Degradation and Development* 27 (6): 1595-1602. doi:10.1002/ldr.2323.

Roy, M. and L. M. McDonald. 2015. Metal Uptake in Plants and Health Risk Assessments in Metal-Contaminated Smelter Soils. *Land Degradation and Development* 26 (8): 785-792. doi:10.1002/ldr.2237.

Trujillo-González, J.M., Torres-Mora, M.A., Keesstra, S., Brevik, E.C., Jiménez-Ballesta, R. 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. *Science of the Total Environment*, 553, pp. 636-642. DOI: 10.1016/j.scitotenv.2016.02.101